Subject: Minutes of Pre-Bid Meeting held at PMU Office on 06 September 2020

ICB-Works/PICIIP-12

Construction of Wastewater Treatment Plant (WWTP) in North Zone, Sialkot

As per the Bidding Documents issued on **September 21**, **2020** the date of pre-bid meeting was scheduled on **September 06**, **2020**. The pre-bid meeting was convened and chaired by the Project Director (PD), Program Management Unit (PMU), Punjab Intermediate Cities Improvement Investment Program (PICIIP), Local Government & Community Development Department, Punjab, Pakistan. Following officials from PMU and EPCM Consultant attended the meeting:

i. Mr. Socrat Aman Rana, Project Director, PMU, PICIIP.

ii. Mr. Javed Iqbal (Chief Engineer), PMU, PICIIP.

iii. Mr. Shuja Dar (Director Procurement & Contracts), PMU, PICIIP.

iv. Mr. Ahmed Naveed Shahbaz (Project Manager/Deputy Team Lead) EPCM.

v. Mr. Muhammad Ayyub (Senior Resident Engineer) EPCM.

vi. Mr. Muhammad Nashad Khan (Procurement & Contract Specialist) EPCM.

vii. Mr. Mohsen Islam Khan (Independent Consultant, Procurement & Contract Specialist) PMU, PICIIP.

The meeting started with the recitation of Holy Quran. The chair welcomed the participants (list attached as **Annex-A**) and asked the Independent Consultant, Procurement & Contract Specialist to start the meeting. The participants were briefed on the bidding documents, particularly the contents of Section-2 (Bid Data Sheet), Section-3 (Evaluation and Qualification Criteria), Section-4 (Bidding Forms) and Section-8 (Particular Conditions of the Contract).

The meeting was held in two parts. During the first part, it was explained in detail by reading the important Instructions to Bidders clauses on preparation of bids and application of evaluation criteria (financial and experience). It was also stressed on significance of a responsive bid submission.

During second part of the meeting, the participants were invited to raise queries. Director Procurement & Contracts advised them to submit their written queries to PMU for written replies / advice accordingly. The Bidders submitted their written queries from time to time before **22**nd **October 2020** and the replies thereof, in writing, are attached as **Annex-B**.

The meeting was concluded with a vote of thanks to and from all the participants.

--00000--

RESPONSES TO BIDDERS' QUERIES ICB-WORKS/PICIIP-12: CONSTRUCTION OF WASTEWATER TREATMENT PLANT (WWTP) IN NORTH ZONE, SIALKOT

Sr#	Bidder Queries	PMU Clarification
1.	The environmental quality standards for municipal & liquid industrial effluent has defined more than 30 parameters for discharged wastewater, however, the design parameters of discharge in IEE&EMP is only considered pH, BOD5, TSS and fecal coliform. Hence, in our project design, which parameters should we consider for WWTP DISCHARGE, please clear.	As per PEPA and also described in PC-I that the WWTP is designed for common pollutant (i.e. pH, BOD, COD, TSS and fecal coliform etc.) and any specific pollutant (heavy metals etc.), to be originated from industries will be removed by industry itself before discharging its industrial effluent into sewerage system of MC Sialkot, to comply with the requirements of PEPA. As per composite wastewater characteristics of existing disposal stations, all heavy metals are within NEQS limits.
2.	For the influent, please clear the source of influent and whether industrial wastewater will blend into WWTP influent.	Influent wastewater to the WWTP is predominately domestic sewage. Very small quantity of industrial wastewater is being mixed with domestic sewage. Despite no wastewater treatment is being done in the industries, industrial effluent has currently no major impact on characteristics of domestic wastewater in Sialkot (Zone-3) due to small in quantity and dilution with large quantity of domestic wastewater. As per wastewater testing results, most of specific pollutants (heavy metals etc.) are within PEQS limits in combined wastewater at disposal stations.
3.	The designed temperature of the wastewater treatment process is 20 °C while the local temperature is lower than 20 °C in most of the time for the whole year. Whether there is an excessive discharge standard in case of local temperature is far below 20 °C.	Waste stabilization ponds are designed on average temperature of coldest month or coldest quarter. In Sialkot, average monthly temperature remains below 20 °C in winter months (December, January and February). In these months, effluent BOD values will exceed but remain within PEQS limits.
4.	Influent from the municipal pipe may bring large particle while there is no screen set in the beginning of this process which can lead to a decrease in wastewater treatment efficiency.	Disposal station will be provided before the WWTP. Mechanical screens will be installed at disposal stations. Large particles in the influent wastewater will be removed at disposal station. From disposal station, wastewater will be carried to the WWTP through forcemains. Construction of disposal station and installation of force mains are not included in the project and shall be executed under separate lot.
5.	There is no disinfect compound added into discharge and the faecal coliform maybe still very high in the effluent of MPs.	No additional disinfection component is provided in the project. Maturation Ponds will perform tertiary treatment.
6.	Geological exploration data is the necessary information for BBQ calculation, please provide.	The requisite data is attached in the email.
7.	Whether the local geological exploration is included in this EPC project, please clear.	Please refer response at Sr. No.6 For further assessment, the Contractor will have to make those arrangements at its own. It shall not be paid to the Contractor, separately.

Sr#	Bidder Queries	PMU Clarification
8.	The material for some equipment is manufactured in CHINA, and the raw material of these equipment are conformed to Chinese standards. Whether the material the standard can convert into Chinese standard in case of material characters is the same with international standards.	No change to the specification will be allowed during execution. All the materials, equipment and works shall be according to specifications and drawings. The material will be approved by The Engineer according to the specifications.
9.	Whether the floating geo-membrane cover is used for the anaerobic pond, please clear.	It is pertinent to mention that no floating geomembrane is used in the WWTP. Geomembrane will be used at the bed of all three ponds (AP, FP and MP) between the soil liner and soil protective cover to minimise the seepage of wastewater into groundwater. Details of geomembrane is provided in the Drawing No. 3976/11/C/7D01.
10.	Whether the Treated Effluent Pumping Station (including pumps) is included in Sialkot WWTP, please clear. If it is included, please provide the drawings.	It is not included in the project.
11.	Please provide the onsite conditions of this project, including road traffic, water supply, power supply, and current site leveling. And please clear the scope of dismantle work including construction structures, plants, etc.;	The bidder should visit the WWTP site to better ascertain the existing conditions. However, topo survey of the site is provided in the drawing. As per ITB 7.2 of the Bidding Document (BD), the Bidder is responsible to visit and examine the Site of Works and its surroundings and obtain for itself on its own responsibility all information that may be necessary for preparing the Bid and entering into a contract for construction of the Works. The costs of visiting the Site shall be at the Bidder's own expense.
12.	At present, it is described in the document that all the 40km sewage collection pipe network has been laid. Please provide the actual laying of the sewage collection pipe network to the project site, burial depth, pipe materials, etc. Elevation data of existing pipelines or future access pipelines or photo data with reference objects on site is preferred.	Laying of sewage collection pipes will be done in separate project (lot) and no sewer pipe laying is involved in the WWTP Area. Wastewater from catchment area of WWTP shall be carried to WWTP through forcemain pumping from the upstream city area. Diameter of forcemain, dimension and levels of inlet structure is provided in Drawings No. 3976/11/C/2J113. Layout of force mains is also shown in Drawings No. 3976/11/C/2J106.
13.	Please provide the discharge condition of the sewage pipe designed in the future, the actual condition of the existing drainage ditch, preferably with elevation and the photo of reference substances.	 Please refer to response at Sr.11 & 12 Pease refer Drawing No. 3976/11/C/2J121 showing details of disposal drain.
14.	Please provide the geological investigation report of this project or near this project site for the follow-up engineering quantity accounting	The requisite data is attached in the email.
15.	No Water proofing item is available in BOQ as it is mention in DWG (3976/033/C/15G01).	Addendum - 01 is attached herewith to cover water proofing item.
16.	Hardcopy of drawings is not clear for reading. Please provide clear copy of drawings.	Fair copy of drawings in PDF format are attached with the email.

Sr#	Bidder Queries	PMU Clarification
17.	Will the Employer provide any place for contractor camp, storage and Plant facilities?	No. The Contractor has to make those arrangements on its own. The Employer may assist the Contractor in this regard.
18.	Will the Employer designate any disposal area for excess excavated material and debris?	No. During execution, the Contractor will identify suitable locations and send a submittal for the approval of the Engineer. The Contractor will locate and inform Employer/RE for disposal area. He will get required permissions from MC/relevant authorities before disposal of excess material/debris. Payment will be made as per actual lead chart to be approved by the Engineer.
19.	Refer to Annexure-A Bill of Quantities, Bill No. 1.1 (Non MRS Items), Sr. item 1 & 2 (Embankment fill with selected soil and clay). Please provided the lead from project site to borrow pit area. Furthermore, our understanding is that royalty of material will be paid by the Employer. Please clarify.	It is already mentioned in the item as follows: "Item rate include lead from any source within district upto WWTP site" It is again clarified that contractor will be liable to arrange the requisite material from any approved source within district Sialkot. Furthermore, payment of royalty shall be included in the quoted rates by the bidders.
20.	Refer to Annexure-A Bill of Quantities, Bill No. 1.1 (MRS Items), Sr. item 4 & MRS clause 3/25 (compaction works). We understand that this item does not include any transportation of material and this transportation will be charged under MRS clause 3/17. Please clarify.	Confirmed
21.	Refer to Annexure-A Bill of Quantities, Bill No. 1.1 (MRS Items), Sr. item 2 & MRS clause 3/52 (Earth work in excavation). Rate include a lead of 100 ft but in MRS Clause 3/17 transportation start from 300 meter or 1000 ft. Please clarify that if the payment will only be made for the lead which is beyond 100 ft. and less than 1000 ft.	Addendum 01 is attached herewith to cover the lead item.
22.	Refer to Annexure-A Bill of Quantities, Bill No. 1.3 & 1.4 (MRS Items), section B Electrical works (Electrical section complete). Many MRS clauses are mentioned on each electrical items which makes it difficult to understand the composite unit rate. Kindly provide the quantities breakup for all items.	The rate of each items shall include cables, pipes, back boxes & gang switches for the scheduled MRS items as per reference numbers. The length has been taken from the drawings. For quantities refer to the BOQ and drawings.
23.	Reference is made to the Part 1, section 3: Evaluation and Qualification criteria, clause 2.1.6 "Registration with Pakistan Engineering Council" As the subject project have the major quantum of civil works so we understand that only PEC specialization codes CE 01, 09, 10 are applicable for this project so you are requested to waive off the requirements of specialization codes ME 07 and EE 11.	Related to PMU.

--00000--

PROGRAM MANAGEMNT UNIT PUNJAB INTERMEDIATE CITIES IMPROVEMENT INVESTMENT PROGRAM

LOCAL GOVERNMENT AND COMMUNITY DEVELOPMENT DEPARTMENT GOVERNMENT OF THE PUNJAB

CONSULTANCY SERVICES FOR ENGINEERING, PROCUREMENT AND CONSTRUCTION MANAGEMENT (EPCM) FOR PUNJAB INTERMEDIATE CITIES IMPROVEMENT INVESTMENT PROGRAM

(Wastewater Treatment Plant, Sialkot City)

GEOTECHNICAL INVESTIGATION DATA

March 2020

Geotechnical & Geoenvironmental Engineering Division NESPAK House, 1-C, Block N, Model Town Extension, Lahore

Email: geotech@nespak.com.pk; Tel: 042-99090000, Ext. 409/442/3017; Fax: 042-99231950

CONSULTANCY SERVICES FOR ENGINEERING, PROCUREMENT AND CONSTRUCTION MANAGEMENT (EPCM) FOR PUNJAB INTERMEDIATE CITIES IMPROVEMENT INVESTMENT PROGRAM

(Wastewater Treatment Plant, Sialkot City)

GEOTECHNICAL INVESTIGATION DATA

TABLE OF CONTENTS

RECOMMENDATIONS FOR LINING MATERIAL

APPENDICES

APPENDIX-A

Fig. A-1	Location Plan of Borrow Areas
Fig. A-2	Geotechnical Investigation Plan
Fig. A-3	Subsurface Soil Profile

APPENDIX-B BOREHOLE, TESTPIT LOGS & FIELD PERMEABILITY TEST RESULTS

APPENDIX-C

Table C-1 Summary of Laboratory Test Results
Table C-2 Summary of Field Density Tests
Detailed Result Sheets

APPENDIX-D REFERENCE FOR LINING MATERIAL

As per geotechnical investigations data, composite liner should be used for the construction of wastewater treatment plant to control leakage/migration of contaminants from the impoundment into the underlying soil/groundwater. The components of composite liner are:

- a) Compacted soil liner
- b) Geomembrane (HDPE Liner)
- c) Protective soil cover

Compacted Soil Liner:

The compacted soil liner shall be placed at the bottom and on side slopes of the ponds. The material suitable to be used for compacted soil liner shall meet the following specifications:

Vertical in-situ hydraulic conductivity in compacted state $\leq 1 \times 10^{-7}$ cm/sec Fines (particles passing 0.075 mm sieve) $\geq 30 \%$ Plasticity index = 8-20 % Gravels (particles passing 75 mm sieve and retaining 4.75 mm sieve) $\leq 20 \%$ Maximum particle size $\leq 10 \text{ mm}$

During current geotechnical investigations, eight (i.e. three onsite and five borrow area) soil samples were collected to check their suitability for compacted soil liner. Location of onsite and borrow area investigation points are attached herewith as *Appendix - A*. Laboratory test results indicated that tested soil samples (collected from TP-2, TP-5, TP-9, Borrow Area-1, Borrow Area-2, Borrow Area-3, BAS-5 & BAS-7) have characteristics as per requirement as stated above.

Soft soil / fill material, if encountered during construction of treatment plants, it should be excavated and removed completely. The exposed surface should be compacted to at least 90 % of the maximum standard Proctor dry density at 2 to 3 % wet of optimum moisture content.

The compacted soil liner shall be placed at the bottom and on side slopes of the ponds and shall have a minimum thickness of 600 mm and shall meet the material specifications mentioned above. The soil liner shall be placed in layers with maximum compacted layer thickness of 150 mm and compacted to at least 90 % of the maximum standard Proctor dry density at 2 to 3 % wet of optimum moisture content.

After the placement of each layer, it shall be inspected and tested to ascertain compliance with specifications, including dry density, moisture content, hydraulic conductivity, etc. by an independent laboratory and Engineer's approval must be taken before laying the next layer.

Geomembrane (HDPE Liner):

High density polyethylene, HDPE Liner having minimum thickness of 60 mils (60/1000 inches) shall be placed over the compacted soil liner. HDPE liner must cover the entire area of earth material that would be in contact with the treated or stored effluent.

HDPE liners shall be installed according to the manufacturer's recommendations, with particular emphasis on seaming and QA/QC.

Protective Soil Cover:

HDPE Liner is required to be covered immediately after placement. The HDPE Liner shall be covered by at least 300 mm thick cover of soil to prevent puncture by equipment and to protect it from degradation by ultraviolet light. The on-site / borrow area fine grained soils classified as Lean Clay as per unified soil classification system (USCS), free of any objectionable material, can be used in the construction of protective soil cover.

The protective soil cover shall be placed in layers with maximum compacted layer thickness of 150 mm and compacted to at least 90 % of the maximum standard Proctor dry density at 2 to 3 % wet of optimum moisture content. Place protective soil cover within 24 hours after placement of the HDPE Liner to minimize the potential for damage from various sources, including precipitation, wind, and ultraviolet light exposure.

The Environmental Protection Agency (EPA) requires the highest level of supervision, i.e. Level 1 supervision for clay-lined waste stabilization ponds. It means that all the earth work operations must be continuously supervised and tested by people specializing in these kinds of works.

Treatment Plant / Pond Embankment:

A side slope of 3H: 1V may be considered during the construction of pond embankment. Material classified as A-2-4 / A-3 / A-4 as per AASHTO soil classification can be used for construction of embankment below compacted clay liner. A 2 ft thick layer of clayey soil (i.e. Protective Soil Cover) should be placed over embankment fill to protect it from ingress of water due to surface water / drainage. The requisite embankment material can be obtained from borrow area sources BAS-1, BAS-2, BAS-3 & BAS-4. The embankment material must be placed and compacted in layers appropriate to the type and size of compaction equipment to at least 95 % of modified AASHTO maximum dry density. At construction stage, appropriate laboratory testing must be carried out on borrow area material to confirm its suitability prior to its use for embankment.

Interior slopes must be kept free of vegetation that could cause liner damage. Trees must not be allowed to grow either in the base or on the banks of the pond. However, interior slopes should be protected by low growing grass above the water line to withstand erosion.

Dewatering:

During field investigations, groundwater table (GWT) was found at a depth of 1.28 m to 1.80 m below NSL at Treatment Plant location. Groundwater may encountered during construction of treatment plant if depth of excavation is more than 1 m below NSL. Therefore, appropriate dewatering measures / arrangements would be required at construction stage to lower the groundwater to at least 0.5 m below final excavation base level.

APPENDICES

• APPENDIX-A:

LOCATION PLAN, GEOTECHNICAL INVESTIGATION PLAN & SUBSURFACE SOIL PROFILE

• APPENDIX-B:

BOREHOLE, TEST PIT LOGS AND FIELD PERMEABILITY TEST RESULTS

• APPENDIX-C:

SUMMARY OF LABORATORY TEST RESULTS & DETAILED RESULT SHEETS

• APPENDIX-D:

REFERENCE FOR LINING MATERIAL

APPENDIX-A

LOCATION PLAN, GEOTECHNICAL INVESTIGATION PLAN AND SUBSURFACE SOIL PROFILE

FIG. A-1	I OCATION PI	LAN OF BORROW	AREAS
I'IO. A-I	LUCATIONTI		ANDAD

FIG. A-2 GEOTECHNICAL INVESTIGATION PLAN

FIG. A-3 SUBSURFACE SOIL PROFILE

APPENDIX-B

BOREHOLE, TEST PIT LOGS AND FIELD PERMEABILITY TEST RESULTS

NATIONAL	ENGINEERING	SERVICES
PAKISTAN	(Pvt.) LIMITEI), LAHORE

 BOREHOLE NO.
 BH-32

 SHEET
 1
 OF
 1

Job No	o. 3	3976	Pro	PUNJAB INTERMEDIATE ject INVESTMENT PROGRAM			ition WASTWE WA	TER TREATMENT PLANT
	charge _			SEWERAGE SYSTEM Client LG & CD, GOVE	I IN SIALKOT CITY	_		S AJK ENGINEERS
	of boring			ND AUGER Drilling Fluid			ınd Water Depth	1.4 m
Coord	inates _		812481.5	ft Ground Elevation		Date	24-01-2020	_ To <u>24-01-2020</u>
		E: 14	77050.48	π			P.L. N.M.C	. L.L.
£ ~	No	_	_			ر ال	x 2 2 × ∠	
Depth (m)	Sample No.	Legend	USCS Symbol	Description of Mat	erial	Casing Hole		Tterrants
0.0	Sar	Fe	ی ق			Dia of Casing/ Hole	0 2 8 9 03 6 SPT Blows/30	2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- -				Brown, LEAN CLAY with SILT, mica, moist.	medium plastic, trace	4		
			CL	mica, moist.				
	SPT-1							
1.0 	3F 1-1			Brown, very soft, LEAN CLAY	with SAND, low plastic,		© 2	GWT
_			CL	little mica, moist.				
2.0 	SPT-2			Light grey, loose, SILTY SAND	, trace mica, wet.		 6 5	
3.0	SPT-3		SM				0 10	
						 <u>E</u>		
_						100 mm		
_ 4.0	SPT-4							
				Grey, medium dense, fine grain SAND with SILT, trace mica, w				
_								
_ 5.0	SPT-5							
5.0 _ _	<u> </u>						21	
_			SP-SM					
_								
6.0	SPT-6						29	
_								
							/	
7 . 0	SPT-7	<i></i>		ВОТТОМ ОГ ВО	REHOLE	†	10	
_								
_								
_							$ \hspace{.1cm} \hspace{.1cm} \hspace{.1cm} \hspace{.1cm} \hspace{.1cm} \hspace{.1cm} \hspace{.1cm} \hspace{.1cm} $	

 BOREHOLE NO.
 BH-33

 SHEET
 1
 OF
 1

Job No	o	3976	Pro	PUNJAB INTERM ject INVESTMENT PF	ROGRAM, WATE	R SUPPLY AND		tion WASTE W	ATER TRE	EATMENT PLANT
Site In	charge _		JUNAID	SEWERAGE Client <u>LG & C</u>	SYSTEM IN SIA CD, GOVERNME		_ Cont	ractor	M/S AJK E	ENGINEERS
Туре	of boring	_	HAN	ID AUGER Dr	illing Fluid	NIL	Grou	nd Water Depth		1.45 m
Coord	inates _		811692.5 76314.23		Elevation	238.29 m	_ Date	22-01-202	<u>20</u> To _	22-01-2020
Depth (m)	Sample No.	Legend	USCS Symbol		on of Material		Dia of Casing/ Hole			remand
1.0	SPT-1		CL	Brown, LEAN CLAY, dry strength, trace roo Brown, firm, LEAN CL high dry strength, trac	ots, moist. _AY, medium pla			φ6		GWT
2.0	SPT-2 SPT-3	//	ML	Brown, loose, SILT, to concretions, moist.	race to little sand	, trace		• 3		
4.0	SPT-4		SM	Grey, loose, fine grain wet.	ned, SILTY SANI	D, trace mica,	——————————————————————————————————————	Φ 4		
5.0 	SPT-6		SP	Grey, loose to mediur poorly graded SAND,				• 10 • 13		
				воттом	OF BOREHO	DLE				

NATIONAL	ENGINEERING	SERVICES
PAKISTAN	(Pvt.) LIMITEI), LAHORE

 BOREHOLE NO.
 BH-34

 SHEET
 1
 OF
 1

Job No	o3	3976	Pro	iect INVESTME	ENT PROGRAM, W	IES IMPROVEMENT ATER SUPPLY AND		tion WASTE W	ATER TRI	EATMENT PLANT
Site In	charge _		JUNAID		ERAGE SYSTEM IN LG & CD, GOVERN	SIALKOT CITY MENT OF PUNJAB	_ Cont	ractor	M/S AJK E	ENGINEERS
Туре	of boring		HAN	ID AUGER	Drilling Fluid _	NIL	Grou	ind Water Depth		1.5 m
Coord	inates _		812614.8 78066.19		round Elevation _	238.57 m	_ Date	26-01-202	<u>.0 </u>	27-01-2020
Depth O (m)	Sample No.	Legend	USCS Symbol		escription of Materia	I	Dia of Casing/ Hole			Remarks
1.0	SPT-1		CL	trace roots, tra	ace mica, moist.	tic,trace concretions,		φ6		GWT
2.0	SPT-2 SPT-3		CL-ML		ILTY CLAY with SAI concretions, wet.	ND, low to medium		7		
3.0	SPT-4		SM	Grey, medium mica, wet.	dense, fine grained	, SILTY SAND, trace	—— 100 mm	0 10		
	SPT-5		SP-SM		dense to dense, fin y graded SAND with			• 24 • 22		
6.0 ·	SPT-6							9 32 31		
	SF1-/			ВОТ	TOM OF BORE	HOLE	•			

NATIONAL	ENGINEERING	SERVICES
PAKISTAN	(Pvt.) LIMITEI), LAHORE

 BOREHOLE NO.
 BH-35

 SHEET
 1
 OF
 1

Job N	o. 3	3976	Pro	PUNJAB INTERMEDIATE CIT Dject INVESTMENT PROGRAM, W			tion WASTE WATE	ER TREATMENT PLANT
				SEWERAGE SYSTEM IN Client LG & CD, GOVERI	N SIALKOT CITY	_		S AJK ENGINEERS
	of boring				NIL		ınd Water Depth	1.28 m
Coord	inates _		813808.3	38 ft Ground Elevation	238.34 m	Date	25-01-2020	To <u>26-01-2020</u>
		E: 14	76971.18	3 π 			P.L. N.M.C	. L.L.
th (No.		_			ng/ e	× 20 ×	, , 0
Depth (m)	Sample No.	Legend	USCS Symbol	Description of Materia	al	Casing Hole		Terrand
0.0	Saı	F	J 8			Dia of Casing/ Hole	2 8 8 9 2 6 9 SPT Blows/30	
				Brown, LEAN CLAY, medium plas	stic, medium to high	1		
_			CL	dry strength.				
_	ODT 4							
1.0 	SPT-1			Brown, firm, SILTY CLAY, low to	medium plastic, trace		φ5	
_			CL-ML	to little concretions, moist.				
_								
_ 2.0	SPT-2			Greyish brown, very loose to med	lium dense SILTY		4 3	
_				SAND, trace clay, trace mica, wet				
_								
_ 3.0	SPT-3		SM				\	
						 E		
						100 mm	/	
	SPT-4						/	
4.0 _	0			Brown, firm, LEAN CLAY, mediun	n to high plastic,		0 5	
			CL	moist.				
5.0 _	SPT-5			Dark grey, loose, SILTY SAND, tr	ace to little clay,		8	
				trace mica, wet.				
_ 6.0	SPT-6		SM	Grey, dense, fine to medium grain	and SILTY SAND		31	
_				trace mica, wet.	ied, OILTT GAND,			
_								
_ 7.0	SPT-7					 	9	
				BOTTOM OF BORI	EHOLE			
Ė								
=								
_								
Ė.								

NATIONAL	ENGINEERING	SERVICES
PAKISTAN	(Pvt.) LIMITEI), LAHORE

 BOREHOLE NO.
 BH-36

 SHEET
 1
 OF
 1

Job No	o	3976	Pro	iect INVESTMEN	IT PROGRAM, WA	S IMPROVEMENT TER SUPPLY AND		tion <u>V</u>	VASTE \	VATE	R TRE	ATME	ENT PLANT
Site In	SEWERAGE SYSTEM IN SIALKOT CITY ite InchargeJUNAIDClient _LG & CD, GOVERNMENT OF PUNJAB ContractorM/									M/S	AJK E	NGIN	EERS
Туре	of boring	_	HAN	ID AUGER	_ Drilling Fluid _	NIL	Grou	nd Wa	ter Deptl	h		1	.6 m
Coord	inates _		813326.0 77853.69		und Elevation	238.43 m	_ Date	2	26-01-20	20	To _	26-0	1-2020
Depth O (m)	Sample No.	Legend	USCS Symbol		cription of Material		Dia of Casing/ Hole						Remarks
1.0	SPT-1		CL	vegetation roots. Brown, firm, LEA	.ΑY, medium plastic	plastic, medium to		φ 7					GWT
2.0	SPT-2		ML	Brown, loose, fin trace mica, wet.	e grained, SANDY	SILT, little clay,		6 5				-	- - - - - - - -
3.0	SPT-4			Grey, loose to m poorly graded SA	edium dense, fine t AND, trace mica, w	o medium grained, et.	——————————————————————————————————————	6	4				
- - - - - - - - - - - - - - - - - - -	SPT-5		SP					o 11					-
- - - - - - - - -	SPT-6							9				-	- - - - - - - - -
7.0 ·	SPT-7			ВОТТ	OM OF BORE	HOLE	•		34				-
-													- - - - - - - - - - - - - - - - - - -

NATIONAL	ENGINEERING	SERVICES
PAKISTAN	(Pvt.) LIMITEI), LAHORE

 BOREHOLE NO.
 BH-37

 SHEET
 1
 OF
 1

Job No	o. 3	3976	Pro	iect INVEST	B INTERMEDIATE CITIE [MENT PROGRAM, WA	TER SUPPLY AND		tion WASTE	WATE	ER TRE	ATMENT PLA	NT
SEWERAGE SYSTEM IN SIALKOT CITY Site InchargeJUNAID Client _LG & CD, GOVERNMENT OF PUNJAB _ Contractor											NGINEERS	
	of boring				Drilling Fluid	NIL		ind Water De	oth		1.45 m	
Coord	inates		813133.3	1 ft	Ground Elevation	238.17 m	Date	24-01-2	2020	_To _	25-01-2020	
		E: 14	76237.96	ft				P.L.	N.M.C.		L.L.	
Depth (m)	Sample No.	Legend	USCS Symbol		Description of Material		Casing/ Hole		Х			ks
0.0	Sam	ĵe T	US				Dia of C	SPT BI			90 100	
-					TY CLAY, low to medium roots, moist.	plastic, trace	†					
			CL-ML									
_	SPT-1											
1.0 					, SILTY CLAY with SANI	D, low to medium		φ 6				/ T
_			CL-ML	piastic, son	ie concretions, wet.						GW	<u></u>
_	007.0											
2.0 	SPT-2			Brown, very	y loose to loose, SANDY	SILT, some clay,		ф 3				
_		//		trace mica,	wet.							
		11										
3.0	SPT-3	11	ML					9 6				
		//					 E					
		11					100 mm					
_ 4.0	SPT-4	//										
4. 0					um dense, fine to mediur e mica, trace silt, wet.	n grained, S I LTY		• 1				
E			SM	OAIVB, II ac	e mica, trace sitt, wet.							
E											F	
5.0 _	SPT-5	///		Brown grey	, loose, SANDY SILT, so	me clay, trace		6				
		11	ML	mica, wet								
		11										
6.0	SPT-6			Brownish a	rey, loose, fine grained, S	SII TV SAND		9				
					e clay, trace mica, wet.	SILTT ONNE,		$ \ \ \ $				
			SM					$ \cdot \setminus \cdot $				
_ 7.0	SPT-7						,	18				
E				В	OTTOM OF BOREH	HOLE						
_												
_												
_												
_												
_											-	

NATIONAI.	ENGINEERING	SERVICES
PAKISTAN	(Pvt.) LIMITEI), LAHORE

 BOREHOLE NO.
 BH-38

 SHEET
 1
 OF
 1

Job No	o3	3976	Pro	PUNJAB INTERME ject INVESTMENT PRO	GRAM, WATE	R SUPPLY AND		tion WASTE	WATER TF	REATME	ENT PLANT
Site In	charge _	N	I. UMAR	SEWERAGE S Client <u>LG & CD</u>	YSTEM IN SIA , GOVERNMEN				EERS		
Туре	of boring			ID AUGER Drilli				nd Water Dep	th	1	.8 m
Coord	inates _		810989.0 77129.62		evation	238.71 m	_ Date	23-01-2	<u>020</u> To	23-0	1-2020
Oepth O (m)	Sample No.	Legend	USCS Symbol		ı of Material		Dia of Casing/ Hole		ows/30cm	80 90 100 O T:T	Remarks
- - - - - - - - - 1.0	SPT-1			Brown, LEAN CLAY, m to high dry strength, tra	ce silt, trace co	ncretions, moist.		φ6		-	- - - - - - - - -
2.0	SPT-2		CL	mgm dry ou origan, u doo	on, naso sono.	5.6.6.6.		• 7			GWT
3.0 ·	SPT-3			Grey, loose to medium poorly graded SAND w			100 mm ———	• 4		-	- - - - - - - -
- - - - - - - - -	SPT-4							9		-	- - - - - - -
5.0 · 5.0 · 	SPT-5		SP-SM					6 17		-	- - - - - - - -
- 6.0 ·	SPT-6							0 15		-	- - - - - - - - - -
7.0	SPT-7			BOTTOM C	OF BOREHO	LE	•	25			

 BOREHOLE NO.
 BH-39

 SHEET
 1
 OF
 1

Job N	o3	3976	Pro	iect INVEST	B INTERMEDIATE CITI MENT PROGRAM, WA	ATER SUPPLY AND		tion WASTE WA	ATER TRI	EATMENT PLANT
									M/S AJK E	ENGINEERS
Туре	of boring				Drilling Fluid _			nd Water Depth		1.7 m
Coord	inates _		811814.6 78032.65		Ground Elevation _	238 . 64 m	Date	27-01-2020	<u>)</u> To _	27-01-2020
Oepth O (m)	Sample No.	Legend	USCS Symbol		Description of Material		Dia of Casing/ Hole	20 2 10 2 10 2 10 2 10 2 1.1 2 10 2 1.1 2 10 2 10	(00 07 	remarks
1.0	SPT-1		CL	dry strength	N CLAY, medium plast , trace silt, moist. , LEAN CLAY, medium ength, trace silt, trace c	plastic, medium to		9 6		GWT
2.0 	SPT-2 SPT-3		CL-ML		SILTY CLAY, low to m strength, moist.	nedium plastic,		φ7		
3.0 	SPT-4				ey, loose to medium de ID, trace to some silt, tr		100 mm	• 8		
5.0	SPT-5		SP					o 12		
6.0 	SPT-6							7		
7.0	SPT-7			ВС	OTTOM OF BORE	HOLE	1	9		

 Test Pit No.
 TP-01

 Sheet
 1
 OF
 1

TESTPIT LOG PUNJAB INTERMEDIATE CITIES IMPROVEMENT

Job No.	3	976	Proje		<u>ENT PROGRAM,</u> ERAGE SYSTEM			ID I	_ocation	WASTE	WATER	RTREAT	MENT PLANT
Site Incl	harge _	JUI	NAID/UN	IAR Client	LG & CD, GO\	/ERNMENT (OF PUN	JAB (Contract	or	M/S A	JK ENGI	NEERS
Coordin	nates _		313544.69 76551.39	9 ft Grou	nd Elevation	238.26	5 m	[Date	08-0	2-2020	TO 08-0	2-2020
								Field De	ensity est	Lab. De	ensity		
Depth in meter	Elevation in meter	Legend	USCS Symbol	DESCRIP'	TION OF MATER	RIAL	Sample Type/No.	Dry Density kN/m ³	Moisture Content %	Max. Dry Density kN/m ³	Optimum m.c. %	Inplace % Compaction	REMARKS
1.4	Elev met control of the control of t		SEN CL	Brown, LEAN CL plastic, trace cor		ica, moist.	uss FD T	15.7	UOO 18	19.3 Pen Max	ijiđo 12	90% 81	

 Test Pit No.
 TP-02

 Sheet
 1
 OF
 1

	o3 ncharge _	.111	Proje	PUNJAB INTERMEDIATE CITIES IMP ect INVESTMENT PROGRAM, WATER S SEWERAGE SYSTEM IN SIALK IAR Client LG & CD, GOVERNMEN	OT CITY	ND					TMENT PLANT
	inates	N: 118	313493.9 77425.28	3 ft Ground Elevation 238							
						Field D	ensity est	Lab. De			
Depth in meter	Elevation in meter	Legend	USCS Symbol	DESCRIPTION OF MATERIAL	Sample Type/No.	Dry Density kN/m ³	Moisture Content %	Max. Dry Density kN/m ³	Optimum m.c. %	Inplace % Compaction	REMARKS
0.0 - - - - - - - - - 0.5			CL	Brown, LEAN CLAY with SAND, medium plastic, medium to high dry strength, trace mica, moist.	FDT-1	15.5	20	19.7	11	79	- - - - - - -
 1.0				Brown, SILTY CLAY with SAND, trace mica							- - - - - -
 1.5			CL-ML	trace concretions, moist. BOTTOM OF TESTPIT	— —BS-2						
											- - - - - - - - -
											- - - - - - -

 Test Pit No.
 TP-03

 Sheet
 1
 OF
 1

TESTPIT LOG

PUNJAB INTERMEDIATE CITIES IMPROVEMENT Job No. INVESTMENT PROGRAM, WATER SUPPLY AND Location WASTE WATER TREATMENT PLANT Project _ SEWERAGE SYSTEM IN SIALKOT CITY JUNAID/UMAR Client LG & CD, GOVERNMENT OF PUNJAB Contractor M/S AJK ENGINEERS Site Incharge _ N: 11812896.46 ft 238.23 m Coordinates _ Ground Elevation ___ __ Date ___ 09-02-2020 TO 09-02-2020 E: 1476696.71 ft Field Density Lab. Density Test Test REMARKS **DESCRIPTION OF MATERIAL** Sample Type/No. Moisture Content % Legend USCS Brown, FAT CLAY, high plastic, high dry strength, trace to little concretions, trace mica, -0.5 FDT-1 15.3 22 СН BS-1 - 1.0 Brown, SANDY SILTY CLAY, some concretions, moist. CL-ML -1.5 **BOTTOM OF TESTPIT**

 Test Pit No.
 TP-04

 Sheet
 1
 OF
 1

	o3 charge _		Proje	ect <u>INVESTMI</u> SEWI	NTERMEDIATE C ENT PROGRAM, ERAGE SYSTEM LG & CD, GOV	WATER SUF IN SIALKOT	PLY AN	ID I					TMENT PLANT
Coordi		N: 118	312391.9 76290.47	ft Grou	nd Elevation								
								Field De	ensity	Lab. De			
Depth in meter	Elevation in meter	Legend	USCS Symbol	DESCRIP'	TION OF MATER	IAL	Sample Type/No.	Dry Density kN/m 3	Moisture Content %	Max. Dry Density kN/m ³	Optimum m.c. %	Inplace % Compaction	REMARKS
0.5			CL CL	to high dry stren- sand, trace mica	AY, medium plas gth, some concret, moist.	ions, trace	FDT-1	15.5	19	18.4	14	84	

 Test Pit No.
 TP-05

 Sheet
 1
 OF
 1

TESTPIT LOG

PUNJAB INTERMEDIATE CITIES IMPROVEMENT

Job No. INVESTMENT PROGRAM, WATER SUPPLY AND Location WASTE WATER TREATMENT PLANT Project _ SEWERAGE SYSTEM IN SIALKOT CITY Client LG & CD, GOVERNMENT OF PUNJAB Contractor JUNAID/UMAR M/S AJK ENGINEERS Site Incharge _ N: 11812068.16 ft 238.28 m 08-02-2020 TO 08-02-2020 Coordinates _ Ground Elevation ___ __ Date ___ E: 1476760.51 ft Field Density Lab. Density Test Test REMARKS **DESCRIPTION OF MATERIAL** Sample Type/No. Dry Density KN/m ³ Moisture Content % Max. Dry Density kN/m 3 Legend USCS Brown, FAT CLAY with SAND, high plastic, high dry strength, trace silt, moist. -0.5 СН BS-1 - 1.0 FDT-1 14.7 27 17.9 14.6 82 -1.5 **BOTTOM OF TESTPIT**

TESTPIT LOG

PUNJAB INTERMEDIATE CITIES IMPROVEMENT

Job No. INVESTMENT PROGRAM, WATER SUPPLY AND Location WASTE WATER TREATMENT PLANT Project _ SEWERAGE SYSTEM IN SIALKOT CITY Client LG & CD, GOVERNMENT OF PUNJAB Contractor JUNAID/UMAR M/S AJK ENGINEERS Site Incharge _ N: 11812840.66 ft 238.38 m 09-02-2020 TO 09-02-2020 Coordinates _ Ground Elevation __ __ Date ___ E: 1477513.92 ft Field Density Lab. Density Test Test REMARKS **DESCRIPTION OF MATERIAL** Sample Type/No. Moisture Content % Max. Dry Density kN/m 3 Legend USCS Brown, LEAN CLAY with SAND, medium plastic, medium to high dry strength, trace concretions, trace silt, moist. -0.5 BS-1 CL FDT-1 15.9 20 - 1.0 -1.5 **BOTTOM OF TESTPIT**

 Test Pit No.
 TP-07

 Sheet
 1
 OF
 1

PUNJAB INTERMEDIATE CITIES IMPRO Job No. 3976 Project INVESTMENT PROGRAM, WATER SUPPOSE SEWERAGE SYSTEM IN SIALKOT OF SITE INCHARGE JUNAID/UMAR Client LG & CD, GOVERNMENT OF STREET CO.								ID I					TMENT PLANT
	linates	N: 118	312334.2 77661.45	2 ft Grou	nd Elevation							TO 07-0	
								Field De	ensity est	Lab. De			
Depth in meter	Elevation in meter	Legend	USCS Symbol	DESCRIP [*]	ΓΙΟΝ OF MATER	IAL	Sample Type/No.	Dry Density kN/m ³	Moisture Content %	Max. Dry Density kN/m 3	Optimum m.c. %	Inplace % Compaction	REMARKS
- 0.5			СН	Brown, FAT CLA high dry strength	, trace silt, moist.		FDT-1	15.5	21	19.1	12	81	
			CL-ML	Brown, SILTY CI trace concretions		st.	,						

 Test Pit No.
 TP-08

 Sheet
 1
 OF
 1

	o. 3			ct <u>INVESTM</u> SEWI	NTERMEDIATE CI ENT PROGRAM, V ERAGE SYSTEM II LG & CD, GOVE	<u>VATER SUP</u> N SIALKOT	PLY AN CITY	<u>D</u> L					MENT PLANT
Coord		N: 118	311624.32 77221.96	2 ft Grou	and Elevation			[TO 07-0	
								Field De		Lab. De			
Depth in meter	Elevation in meter	Legend	USCS Symbol		TION OF MATERIA		Sample Type/No.	Dry Density KN/m ³	Moisture Content %	Max. Dry Density kN/m ³	Optimum m.c. %	Inplace % Compaction	REMARKS
dea	Elev met control of the control of t	697	νδη CH	strength, trace s	Y, high plastic, hig		Sar DD Typ	15.3	21 21	Max	Opti n.c.	, Inpi	
													_ _ _

 Test Pit No.
 TP-09

 Sheet
 1
 OF
 1

	o3 ncharge _			ect <u>INVESTMENT PROGRAM, WATER S</u> SEWERAGE SYSTEM IN SIALK	PUNJAB INTERMEDIATE CITIES IMPROVEMENT INVESTMENT PROGRAM, WATER SUPPLY AND SEWERAGE SYSTEM IN SIALKOT CITY Client LG & CD, GOVERNMENT OF PUNJAB			Location WASTE WATER TREATMENT PLANT Contractor M/S AJK ENGINEERS			
Coordinates		N: 11811176.38 ft E: 1476575.18 ft		8 ft Ground Elevation 238	Ground Elevation 238.66 m						
						Field Density Test		Lab. Density Test			
Depth in meter	Elevation in meter	Legend	USCS Symbol	DESCRIPTION OF MATERIAL	Sample Type/No.	Dry Density kN/m ³	Moisture Content %	Max. Dry Density kN/m ³	Optimum m.c. %	Inplace % Compaction	REMARKS
0.5			CL	Brown, LEAN CLAY with SAND, medium plastic, medium to high dry strength, trace s trace mica, moist. BOTTOM OF TESTPIT	FDT-1	15.4	21	18.7	14	82	

 Test Pit No.
 TP-10

 Sheet
 1
 OF
 1

PUNJAB INTERMEDIATE CITIES IMPROVEMENT Job No. 3976 Project INVESTMENT PROGRAM, WATER SUPPLY AND Location WASTE WATER TREATMENT PLAI SEWERAGE SYSTEM IN SIALKOT CITY Site Incharge JUNAID/UMAR Client LG & CD, GOVERNMENT OF PUNJAB Contractor M/S AJK ENGINEERS											
Coordinates		N: 11811322.34 ft E: 1477867.77 ft		4 ft Ground Elevation 238							
						Field Density Test		Lab. Density Test			
Depth in meter	Elevation in meter	Legend	USCS Symbol	DESCRIPTION OF MATERIAL	Sample Type/No.	Dry Density kN/m ³	Moisture Content %	Max. Dry Density kN/m 3	Optimum m.c. %	Inplace % Compaction	REMARKS
0.5			CL	Brown, LEAN CLAY, low to medium plastic, trace concretions, trace sand, trace mica, moist. BOTTOM OF TESTPIT	FDT-1	15.5	21	19.2	12	81	

 Test Pit No.
 BAS-01

 Sheet
 1
 OF
 1

TESTPIT LOG

PUNJAB INTERMEDIATE CITIES IMPROVEMENT Project ____INVESTMENT PROGRAM, WATER SUPPLY AND __ Location __ Job No. TAWI-1 NEAR GONDAL SEWERAGE SYSTEM IN SIALKOT CITY JUNAID/UMAR Client LG & CD, GOVERNMENT OF PUNJAB Contractor M/S AJK ENGINEERS Site Incharge _ Date _____19-01-2020 TO 19-01-2020 N: 32669452 Coordinates _ Ground Elevation __ E: 74530458 Field Density Lab. Density Test Test **DESCRIPTION OF MATERIAL** REMARKS Sample Type/No. Moisture Content % Max. Dry Density kN/m 3 Legend USCS Grey, fine grained, poorly graded SAND with SILT, trace mica, moist to wet. -0.5 SP-SM - 1.0 -1.5 **BOTTOM OF TESTPIT**

 Test Pit No.
 BAS-02

 Sheet
 1
 OF
 1

TESTPIT LOG

PUNJAB INTERMEDIATE CITIES IMPROVEMENT Project ____INVESTMENT PROGRAM, WATER SUPPLY AND __ Location ____TAWI-2 NEAR GONDAL Job No. SEWERAGE SYSTEM IN SIALKOT CITY Client LG & CD, GOVERNMENT OF PUNJAB Contractor M/S AJK ENGINEERS JUNAID/UMAR Site Incharge _ Date _____19-01-2020 TO 19-01-2020 N: 327184580 Coordinates _ Ground Elevation __ E: 744536889 Field Density Lab. Density Test Test **DESCRIPTION OF MATERIAL** REMARKS Sample Type/No. Dry Density KN/m ³ Moisture Content % Max. Dry Density kN/m 3 Legend USCS Grey, fine grained, SILTY SAND, trace mica, moist to wet. -0.5 SM - 1.0 -1.5 **BOTTOM OF TESTPIT**

 Test Pit No.
 BAS-03

 Sheet
 1
 OF
 1

TESTPIT LOG

PUNJAB INTERMEDIATE CITIES IMPROVEMENT

Project ____INVESTMENT PROGRAM, WATER SUPPLY AND ___ Location ____KURI-1 (MUNAWAR WALI) Job No. SEWERAGE SYSTEM IN SIALKOT CITY JUNAID/UMAR Client LG & CD, GOVERNMENT OF PUNJAB Contractor M/S AJK ENGINEERS Site Incharge _ - Date ______ 19-01-2020 TO 19-01-2020 N: 32719222 Coordinates _ Ground Elevation __ E: 74453710 Field Density Lab. Density Test Test **DESCRIPTION OF MATERIAL** REMARKS Sample Type/No. Dry Density kN/m ³ Moisture Content % Max. Dry Density kN/m 3 Legend USCS Grey, fine to medium grained, poorly graded SAND, trace to little silt, moist. -0.5 SP - 1.0 -1.5 **BOTTOM OF TESTPIT**

 Test Pit No.
 BAS-04

 Sheet
 1
 OF
 1

TESTPIT I OG

PUNJAB INTERMEDIATE CITIES IMPROVEMENT Project ____INVESTMENT PROGRAM, WATER SUPPLY AND __ Location ___ KURI-2 (MUNAWAR WALI) Job No. SEWERAGE SYSTEM IN SIALKOT CITY JUNAID/UMAR Client LG & CD, GOVERNMENT OF PUNJAB Contractor M/S AJK ENGINEERS Site Incharge __ - Date ______ 19-01-2020 TO 19-01-2020 N: 32719149 Coordinates __ Ground Elevation __ E: 74454811 Field Density Lab. Density Test Test **DESCRIPTION OF MATERIAL** REMARKS Sample Type/No. Moisture Content % Max. Dry Density kN/m 3 Legend USCS Grey, fine grained, poorly graded SAND with SILT, moist. -0.5 SP-SM - 1.0 -1.5 **BOTTOM OF TESTPIT**

 Test Pit No.
 Borrow Area-1

 Sheet
 1
 OF
 1

TESTPIT LOG

Job No	o3	976	Proje	ect INVESTMENT PROGRAM, WATER SU	PPLY AN	<u>1D</u>	Location	CH	AK SEM	A (SIND	UWALA)
Site In	charge		M. UMAR	SEWERAGE SYSTEM IN SIALKOT Client LG & CD, GOVERNMENT		JAB (Contract	or	M/S A	JK ENGI	NEERS
Coord		N: 325 E: 744	54794	Ground Elevation							_
						Field De	ensity est	Lab. De Te			
Depth in meter	Elevation in meter	Legend	USCS Symbol	DESCRIPTION OF MATERIAL	Sample Type/No.	Dry Density kN/m ³	Moisture Content %	Max. Dry Density kN/m ³	Optimum m.c. %	Inplace % Compaction	REMARKS
_ 0.0	üξ	3	⊃ છે`	LEAN CLAY, grass vegetation, moist.	ο E	005	ΣÖ	Z Q Z	Ğ E	nl %	_
0.5			CL	Brown, LEAN CLAY with SAND, medium plastic, trace to little silt, trace concretions, moist. BOTTOM OF TESTPIT	# BS-1						

 Test Pit No.
 Borrow Area-2

 Sheet
 1
 OF
 1

TESTPIT LOG

Job No	o. 3	976	Proie	PUNJAB IN	ITERMEDIATE CITI NT PROGRAM, WA	ES IMPRO	VEMEN PLY AN	NT ID I	_ocation	LAL	PUR NE	AR SIN	DUWALA
			M. UMAR	SEWE	RAGE SYSTEM IN LG & CD, GOVER	SIALKOT	CITY					JK ENGI	
Coord	inates	N: 325 E: 744		Grou	nd Elevation	-		l	Date	13-0	2-2020	10 13-0	2-2020
								Field De		Lab. De			
				D=000 D				Te	est	16	est	u.	DEMARKO
ë	Elevation in meter	p	ω <u>σ</u>	DESCRIPT	TION OF MATERIAL	-	No.	3 £	ure ent o	Dry 3	wn %	Inplace % Compaction	REMARKS
Depth in meter	Eleva	Legend	USCS Symbol				Sample Type/No.	Dry Density KN/m ³	Moisture Content %	Max. Dry Density kN/m ³	Optimum m.c. %	Inplac % Co	
_ 0.0 _					AY, little grass roots AY with SAND, med		4						_
- -				plastic, little silt, t	race concretions, me	oist.							<u> </u>
_ _ 0.5													
_ 0.5 _ _			CL				-						_ _ _
_							– BS-1						<u> </u>
_													_ _ _
— 1.0 –													 _ _
1.2		(37.37		BOTT	OM OF TESTPI	Т							_
													<u> </u>
_													
_													_ _ _
													<u> </u>
_													
_ 													
- -													<u> </u>
<u> </u>													<u> </u>
													<u> </u>
_													<u> </u>
_													<u> </u>
- -													_ _ _
_													
_													<u>–</u> –
_													<u> </u>
_													
_													
													<u> </u>
													<u> </u>
_													- -
													<u> </u>
⊢													_

 Test Pit No.
 Borrow Area-3

 Sheet
 1
 OF
 1

TESTPIT LOG

PUNJAB INTERMEDIATE CITIES IMPROVEMENT Job No. Project _ INVESTMENT PROGRAM, WATER SUPPLY AND _ Location _ CHATTA PIND SEWERAGE SYSTEM IN SIALKOT CITY Client LG & CD, GOVERNMENT OF PUNJAB Contractor M. UMAR M/S AJK ENGINEERS Site Incharge _ N: 3256140 Coordinates _ Ground Elevation _ __ Date ___ 13-02-2020 TO 13-02-2020 E: 7445729 Field Density Lab. Density Test Test REMARKS **DESCRIPTION OF MATERIAL** Sample Type/No. Moisture Content % Max. Dry Density kN/m 3 Legend USCS Vegetation, LEAN CLAY. Brown, LEAN CLAY with SAND, low to medium plastic, trace to little sand, moist. -0.5 CL BS-1 - 1.0 Brown, SANDY SILTY CLAY, low plastic, CL-ML 1.3 **BOTTOM OF TESTPIT**

 Test Pit No.
 BAS-05

 Sheet
 1
 OF
 1

TESTPIT LOG

PUNJAB INTERMEDIATE CITIES IMPROVEMENT

Project ___INVESTMENT PROGRAM, WATER SUPPLY AND ___ Location ___MARI KOKHRAN (SAMPLE-2) Job No. 3976 SEWERAGE SYSTEM IN SIALKOT CITY Client LG & CD, GOVERNMENT OF PUNJAB Contractor M. UMAR M/S AJK ENGINEERS Site Incharge _ _____ Date ___ N: 326659859 19-02-2020 TO 19-02-2020 Coordinates Ground Elevation ___ E: 744036265 Field Density Lab. Density Test Test REMARKS **DESCRIPTION OF MATERIAL** Sample Type/No. Moisture Content % Dry Density kN/m ³ Max. Dry Density kN/m ³ Legend USCS Reddish brown, LEAN CLAY, medium plastic, medium dry strength, some concretions, trace grass roots, moist to wet. -0.5 CL - 1.0 -1.5 **BOTTOM OF TESTPIT**

 Test Pit No.
 BAS-07

 Sheet
 1
 OF
 1

TESTPIT LOG

PUNJAB INTERMEDIATE CITIES IMPROVEMENT

Job No	o3	3976	Proje	ct <u>INVESTMENT PROGRAM, WATER SUF</u> SEWERAGE SYSTEM IN SIALKOT	PLY AN	ID I	_ocation	MAR	I KOKH	KAN (SA	AMPLE-1)
Site In	charge _		M. UMAF			JAB (Contract	or	M/S A	JK ENGI	NEERS
Coord	inates		671468 103579	Ground Elevation		[Date	19-0	1-2020	TO 19-0	1-2020
						Field De	ensity	Lab. De Te			
Depth in meter	Elevation in meter	Legend	USCS Symbol	DESCRIPTION OF MATERIAL	Sample Type/No.	Dry Density kN/m ³	Moisture Content %	Max. Dry Density kN/m ³	Optimum m.c. %	Inplace % Compaction	REMARKS
0.5			CL	Reddish brown, LEAN CLAY, medium plastic, medium to high dry strength, some silt, moist. BOTTOM OF TESTPIT							

National Engineering Services Pakistan (Pvt.) Limited

Name of I	Project:					Site	Sialkot		Location: Was	stewater
PUNJAB	-	DIATE CITIE GRAM	S IMPROVE	EMENT		Site.	Sidikot		Treatment Pla	
(Water St	apply and Se	werage Syster	n in Sialkot (City)						
Depth belo	ow top of casi	ing/standpipe t	0:			Job :	No. 3976		Borehole No.	BH – 33
(a) botton	m of borehole	: 4.40 m				Date	e: 10/02/2020)	Sheet 1 of	1
(b) botton	n of casing: 4	1.40 m					und level: Inance datum)		Crew/Operator	:
(c) top of	filter materia	1:				Wea	ther: Sunny		Temperature:	21 °C
(d) centre	of piezomete	er tip:				Тур	e of test: CON	STANT	Material: Silty	Sand
(e) initial	groundwater	level:				Inte	rnal diameter o	of casing /	standpipe: 7.60)cm
Height of	casing/standp	ipe above surf	ace: 0.11 m			Leng	gth of filter:	mm	Dia. of filter	mm
Elevation	of casing/star	ndpipe:	(Ordnaı	nce datum)			e of piezomete	r		
Test recor			`		l					
Time	Time			Mea	asureme	ent of	flow			
	elapsed		Fall in	Internal	Volu	-	Time for	Flow q_t	Head, H	q_t/H
	ʻt'	1 / √ t Loss	standpipe	dia. of standpipe	of flo	ow	flow			
	min	in Lit	(m)	(m)	(m ²	3)	min sec	(m ³ /s)	(m)	m ² /s
1330										
	1	3.50								
	1	1.20								
	2	1.80								
	2	1.30								
	2 2 5	1.85								
	5	1.84								
	5	1.85								
	21 min	13.34								
		liters								
				K = q /	(FvF	1c)				
							ıc.			
				$\Phi = 7.6$		J/80	·C			
				$H_C = 4.3$						
						75 -	.76 - 151	w 100 =	= 1.12x10 ⁻³	om/s = =
				K = 10.	38 /Z.	/3 X	(/.0 X 4.51	X 100 =	- 1.12X1U ³³ (cm/sec.
			l	1		_				

National Engineering Services Pakistan (Pvt.) Limited

		DIATE CITIE GRAM	S IMPROVE	EMENT	Site	e: Sialkot		Location: Was Treatment Pla	
(Water S	upply and Se	werage Syste	m in Sialkot (City)					
Depth bel	ow top of cas	ing/standpipe t	o:		Job	No. 3976		Borehole No.	BH – 34
(a) botto	m of borehole	: 2.42 m			Da	e: 10/02/2020		Sheet 1 of	1
	m of casing: 2				(Or	ound level: dnance datum)		Crew/Operator	
(c) top of	filter materia	1:				ather: Sunny		Temperature:	
(d) centre	of piezomete	er tip:			Тур	e of test: CON	STANT	Material: Silt	with Sand
(e) initial	groundwater	level:			Inte	ernal diameter o	of casing /	standpipe: 7.60)cm
Height of	casing/standp	ipe above surf	ace: 0.43 m		Lei	igth of filter:	mm	Dia. of filter	mm
Elevation	of casing/star	ndpipe:	(Ordnaı	nce datum)	Тур	e of piezomete	r		
Test recor									
Time	Time elapsed 't'	1 / √ t Loss	Fall in standpipe	Internal dia. of standpipe	Volume of flow	Time for flow	Flow q _t	Head, H	q _t /H
	min	in Lit	(m)	(m)	(m ³)	min sec	(m ³ /s)	(m)	m ² /s
1330									
	1	0.20							
	1	0.2							
	2 2 5	0.10 0.08							
	5	0.05							
	5	0.10							
	5	0.10							
	5	0.10							
	26 min	0.93	1						
		liters		$q = 0.59$ $\Phi = 7.6$ $H_C = 2.5$	85 m		5 x 100 =	= 1x10 ⁻⁴ cm/	/sec.

Reference: BS 5930:1990+A2:2010 (Code of Practice for site Investigations)

National Engineering Services Pakistan (Pvt.) Limited

	Project: INTERMED MENT PROC		S IMPROVE	EMENT		Site	Sialkot		Location: Effl Pumping Stat	
	upply and Se		m in Sialkot (City)						
Depth bel	ow top of casi	ng/standpipe	:0:			Job	No. 3976		Borehole No.	BH – 46
(a) botto	m of borehole	: 3.65 m				Date	e: 10/02/202	20	Sheet 1 of	1
							und level:		Crew/Operator	••
	n of casing: 3					_	Inance datun	/	T	15 oC
	filter materia						ther: Sunny		Temperature:	
	e of piezomete						e of test: CO		Material: Silty	
-	groundwater								standpipe: 7.60)cm
	casing/standp						gth of filter:		Dia. of filter	mm
	of casing/stan	dpipe:	(Ordna	nce datum)		Тур	e of piezome	ter		
Test reco										1
Time	Time elapsed		Fall in	Mea Internal	sureme Volu		Time for	Flow q_t	Head, H	q _t /H
	't'	1 / √ t	standpipe	dia. of	of fl		flow	1 10 w qt	11000, 11	<i>q</i> [∥] 11
	min	Loss in	(m)	standpipe (m)	(m	³)	min sec	(m ³ /s)	(m)	m ² /s
	111111	Lit	(111)	(111)	(111	,	111111 300	(111 /3)	(111)	111 / 3
1330										
	1	6.50								
	1	3.50								
	l	3.40								
	1	4.00								
	2	5.00 5.55								
	2 2	5.50								
	2	4.50								
	2 5	6.70								
	5	7.20								
	5	7.50								
	5	7.50								
	5	7.50		K = q /	(F x I	H _C)				
				q = 30.5			ec			
			_	$\Phi = 7.60$	0 cm					
	37 min	67.90		$H_{\rm C} = 4.3$					2	
		liters		K = 30.3	58 /2.	.75 x	x 7.6 x 4.3	35 x 100 =	$= 3.36 \times 10^{-3}$	cm/sec.

National Engineering Services Pakistan (Pvt.) Limited VARIABLE HEAD PERMEABILITY TEST Name of Project: Site: Sialkot Location: Effluent Pumping PUNJAB INTERMEDIATE CITIES IMPROVEMENT Station INVESTMENT PROGRAM (Water Supply and Sewerage System in Sialkot City) Depth below top of casing/ standpipe to: Job No. 3976 Borehole No BH - 50(a) bottom of borehole: 1.40 m Date 10/02/2020 Sheet 01 of 01 Ground level: Crew/Operator: m (b) bottom of casing: 1.40 m (Ordnance datum) (c) top of filter material: Weather: Sunny 20 °C Temperature: (d) centre of piezometer tip: Type of test: Falling Material: Silt with clay/ Silty Clay (e) initial groundwater level: Diameter of casing / standpipe: 7.6 cm Height of casing/standpipe above surface: 0.10 m Length of filter: mm Dia. of filter: mm Elevation of casing/standpipe: m (Ordnance datum) Type of piezometer: Test record: Time Time Depth to Time Time Depth to Time Time Depth elapsed water Elapsed water level elapsed to water 't' 't' 't' level level from casing Top min (cm) min (m) hr min (m) 1 0.20 2 0.20 2 0.10 2 0.15 2 0.30 5 0.30 5 0.30 $K = 2.3\pi r_0 / 5.5(t_2 - t_1) \log H_1/H_2$ $H_1 = 1.50 \text{ m}, H_2 = 1.474 \text{ m}, r_0 = 3.8 \text{ cm}$ $t_2 = 1440 \text{ sec}, t_1 = 0 \text{ sec}$ $K = 2.63 \times 10^{-5} \text{ cm/sec.}$ 24 min 2.65 cm

Remarks:

APPENDIX-C

LABORATORY TEST RESULTS AND DETAILED TEST RESULT SHEETS

TABLE C-1 SUMMARY OF LABORATORY TEST

RESULTS

TABLE C-2 SUMMARY OF FIELD DENSITY TESTS

DETAILED RESULT SHEETS

CONSULTANCY SERVICES FOR ENGINEERING, PROCUREMENT AND CONSTRUCTION MANAGEMENT FOR PUNJAB INTERMEDIATE CITIES IMPROVEMENT INVESTMENT PROGRAM (Wastewater Treatment Plant)

Summary of Laboratory Test Results

																	ary or Laboratory Test 1																			
																	Material Classification	Unconfine	d Compression Test	Direct She	ar Test	Cc	onsolidation T	est with swell po	etential Measures	nent	Modifie Compa	d AASHTO action Test		Chen	ical Analysis of	Soil		Chemical Analys	sis of Water	
Sr No.	Location	BH/TP No.	Sample No.	Depth	Natural Moisture	In-situ Bulk	In-situ Dry			Grain Size Analys	is (% Passin	g)	A	terberg Limits				4											3 Point Soaked CBR at 95% of	<u></u>						
					Moisture Content (NMC)	Density	Density						LL	PL PI	Unified Soil Classification System (USCS Symbol	AASHTO Classificatie Symbol	Material Description as per USCS	q,	Failure Strain	ı c	ф	co	Ce :	Swell Pressure	mv	k	ОМС	Max. Dry Density (MDD)	MDD	Sulphate Content	Chloride Content	Organic Matter	Sulphate Content	Chloride Content	Total Dissolved Soilds	рН
-	-		-	(m)	(%)	(kN/m³)	(kN/m^3)	#4	#10	#40 #100	# 200	0.02 mm	0.002 mm (%)	(%) (%	,			(kPa)	%	(kPa)	(deg)	-	-	(kPa)	cm2/Kg	cm/sec	(%)	(kN/m³)	(%)	(%)	(%)	(%)	(ppm)	(ppm)	(ppm)	-
56			SPT-1	1.00-1.45				100	100	90 89	79	54	8 33	23 10	CL	Α-4	Lean Clay with sand	-		-	-	-	-					-	-	-		-	-	-	-	-
57		BH-32	SPT-4	4.00-4.45		-		100	100	62 7	5	-			SP-SM	A-3	Poorly Graded Sand with Silt					-	-						-			-	-		-	-
58			w/s	-		-		-	-		-	-			-	-	-				-	-	-						-			-	123	85	400	7.3
59			SPT-2	2.00-2.45	-	-		100	100	100 98	95	55	7 33	25 8	ML	Λ-4	Sät	-			-	-	-	-	-		-	-	-	0.07	0.07	0.29	-			-
60		BH-33	SPT-7	7.00-7.45	-	-		100	100	37 9	4	-			SP	A-1-b	Poorty Graded Sand				-	-	-	-	-				-	-	-	-	-	-		-
61	t Plant	BH-34	SPT-5	5.00-5.45	-	-		100	100	51 16	7	-			SP-SM	A-3	Poorly Graded Sand with Silt	-				-	-					-	-		-	-	-			-
62	Treatment		SPT-4	4.00-4.45	-	-		100	100	100 98	96		40	24 16	CL	A-6	Lean Clay	-	-		-	-	-	-	-		-	-	-	0.08	0.05	0.31	-	-	-	-
63	ater Tre	BH-35	W/S	-	-	-		-	-		-	-			-	-	-	-	-		-	-	-	-	-		-	-	-			-	165	390	300	7.8
64	Wastewater	BH-36	SPT-4	4.00-4.45	-	-		100	100	49 8	4	-			SP	A-1-b	Poorly Graded Sand	-		-	-	-	-	-	-		-	-	-		-	-	-		-	
65	>	BH-37	SPT-6	6.00-6.45	-	-		100	100	99 81	35				SM	A-2-4	Silty Sand	-	-	-	-	-	-		-			-	-	-		-	-	-		-
66			SPT-2	2.00-2.45	-	-		97	96	94 91	89	54	8 35	23 12	CL	A-6	Lean Clay	-	-	-	-	-	-	-				-	-			-	-		-	
67		BH-38	SPT-6	6.00-6.45	-	-	-	100	100	47 9	5			Non-Plastic	SP-SM	A-1-b	Poorly Graded Sand with Silt	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-
68		B.1.00	SPT-1	1.00-1.45	-	-		100	98	96 94	93	55	13 38	22 16	CL	A-6	Lean Clay	-		-	-	-	-	-	-	-	-	-	-	0.08	0.05	0.32	-		-	-
69		BH-39	SPT-7	7.00-7.45	-	-		100	100	42 1	0	-			SP	A-1-b	Poorty Graded Sand	-	-	-	-	-	-	-	-		-	-	-			-	-	-	-	-
89		TP-1	BS-1	0.00-1.40	-	-	-	100	97	90 84	80	-	- 38	22 16	CL	A-6	Lean Clay with Sand	-	-	-	-	-	-	-	-		11.8	19.3	0.5	-	-	-	-	-	-	
90		TP-2	BS-1	0.00-1.00	-	-	-	100	99	96 87	84	55	22 42	24 18	CL	A-7-6	Lean Clay with Sand	-	-	-	-	0.388	0.050	262.0	0.0197	2.4 X 10 ⁻⁹	11.2	19.7	-	-	-	-	-	-	-	-
91		TP-3	BS-1	0.00-1.50	-	-		100	98	96 94	93	-	- 51	27 24	СН	A-7-6	Fat Clay	-	-	-	-	-		-	-			-	-	-	-	-	-	-		-
92	es	TP-4	BS-1	0.00-1.50	-	-	-	100	100	99 98	97	-	- 49	27 22	CL	A-7-6	Lean Clay	-	-	-	-	-	-	-	-		14.0	18.4	0.3	-	-	-	-	-	-	-
93	Samples	TP-5	BS-1	0.00-1.50	-	-	-	100	97	90 86	85	56	22 59	31 28	СН	A-7-5	Fat Clay with Sand	-	-	-		0.663	0.111	161.5	0.0686	8.6 X 10 ⁻⁹	14.6	17.9	-	-	-	-	-	-	-	-
94	On-site	TP-6	BS-1	0.00-1.50	-	-	•	100	93	87 82	79	-	- 44	25 19	CL	A-7-6	Lean Clay with Sand	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
95		TP-7	BS-1	0.00-1.20	-	-	-	100	100	99 96	95	-	- 50	27 23	СН	A-7-6	Fat Clay	-	-	-	-	-	-	-	-	-	11.7	19.1	0.6	-	-	-	-	-	-	-
96		TP-8	BS-1	0.00-1.50	-	-	-	100	96	93 92	92	-	- 50	27 23	СН	A-7-6	Fat Clay	-	-	-		-	-	-	-			-	-	-	-	-	-	-	-	-
97		TP-9	BS-1	0.00-1.50	-	-	-	100	99	91 83	82	-	- 45	25 20	CL	A-7-6	Lean Clay with Sand	-	-	-		0.396	0.023	177.0	0.0166	2.30 X 10 ⁻⁹	13.6	18.7	-	-	-	-	-	-		-
98		TP-10	BS-1	0.00-1.50	-	-	-	100	99	96 93	91	59	22 -		CL	A-6	Lean Clay	-	-	-	-	-	-	-	-		12.2	19.2	0.4	-	-	-	-	-	-	-

CONSULTANCY SERVICES FOR ENGINEERING, PROCUREMENT AND CONSTRUCTION MANAGEMENT FOR PUNJAB INTERMEDIATE CITIES IMPROVEMENT INVESTMENT PROGRAM (Wastewater Treatment Plant)

Summary of Laboratory Test Results

															Atte	rberg Limits	is		Mat	erial Classification	Unconfined	l Compression Fest	Direct SI	near Test		Consolidation 7	Test with swell	potential Measu	rement		d AASHTO action Test		Ch	emical Analysis o	f Soil		Chemical Ana	lysis of Water	
Sr No. Ls	cation	BH/TP No.	Sample No.	Depth	Natural Moisture Content (NMC)	In-situ Bul Density	k In-sit Der	u Dry ssity		Grai	in Size Anal	ysis (% Pas	sing)		LL	PL	Cl. Sys	Unified Soil lassification stem (USCS) Symbol	AASHTO Classification Symbol	Material Description as per USCS	q,	Failure Strain	c	ф	co	Ce	Swell Pressure	. mv	k	ОМС	Max. Dry Density (MDD)	3 Point Soaked CBR at 95% of MDD	Sulphate Content	Chloride Content	Organic Matter	Sulphate Content	Chloride Content	Total Dissolved Soilds	i pH
-	-		-	(m)	(%)	(kN/m³)	(kN	/m³)	#4	#10 #	40 #10	90 # 20	0 0.02 mr	0.002 mi	(%)	(%)	(%)				(kPa)	%	(kPa)	(deg)	-	-	(kPa)	cm2/Kg	cm/sec	(%)	(kN/m ³)	(%)	(%)	(%)	(%)	(ppm)	(ppm)	(ppm)	-
99		BAS-1	cs	0.00-1.50	-	-		-	100	100 7	73 1:	5 9	-	-	-	-	-	SP-SM	A-3	Poorly Graded Sand with Silt	-	-	-		-	-	-	-	-	13.1	17.8	13.6	-	-	-	-	-	-	-
100		BAS-2	cs	0.00-1.50	-	-			100	100 6	58 2.	3 14	-	-		-	-	SM	A-2-4	Silty Sand	-	-	-	4	-		-		-	13.6	17.4	13.5	-	-	-	-	-		-
101		BAS-3	cs	0.00-1.50	-	-			100	100 2	28 2	1	-	-		-	-	SP	A-1-b	Poorly Graded Sand	-	-	-	4	-		-		-	13.6	17.3	13.7	-	-	-	-	-		-
102	Sample	BAS-4	cs	0.00-1.50	-	-			100	100 6	i5 1°	7 9	-	-	,			SP-SM	A-3	Poorly Graded Sand with Silt	-	-	-	i	-		-	-	-	12.9	17.6	10.8	-	-	-	-	-	-	-
103	g	Borrow Area 1	BS	0.20-1.20	-	-			96	92 5	90 8	7 74	48	19	48	27	21	CL	A-7-6	Lean Clay with Sand	-	-	-	i	0.586	0.039	230.8	0.0261	3.2 X 10 ⁻⁹	13.5	18.8	-	-	-	-	-	-	-	-
104	Borrow	Borrow Area 2	BS	0.10-1.20	-	-		-	100	99 5	94 8	4 78	52	20	44	25	19	CL	A-7-6	Lean Clay with Sand	-	-	-	-	0.520	0.147	61.6	0.0996	1.3 X 10 ⁻⁸	12.1	19.4	-	-	-	-	-	-	-	-
105		Borrow Area 3	BS	0.10-1.00	-	-		-	100	99 5	97 9	1 84	-	-	34	21	13	CL	A-6	Lean Clay with Sand	-	-	-	-	0.396	0.173	31.0	0.1259	1.7 x 10 ⁻⁸	10.6	19.7	-	-	-	-	-	-	-	-
106		BAS-5	BS	-	-	-			100	99 5	98 9	6 95	59	22	34	21	13	CL	A-6	Lean Clay	-	-	-	-	0.563	0.117	69.2	0.0766	1.6 X 10 ⁻⁸	11.5	18.8	-	-	-	-	-	-	-	-
107		BAS-7	BS	-	-	-		-	100	99 5	98 9	7 96	63	24	44	25	19	CL	A-7-6	Lean Clay	-	-	-	-	0.526	0.041	200.0	0.0278	5.8 X 10 ⁻⁹	15.1	17.8	-	-	-	-	-	-	-	-

LEGEND:

UDS

BOREHOLE
STANDARD PENETRATION TEST

UNDISTURBED SOIL SAMPLE

WATER SAMPLE

TP TESTPIT

CS COMPOSITE SAMPLE

BAS DODDOW AREA SAMPA

BAS BORROW AREA SA
BA BORROW AREA

CS BULK SAMPLE

CS BULK SAMPLE

CONSULTANCY SERVICES FOR ENGINEERING, PROCUREMENT AND CONSTRUCTION MANAGEMENT FOR PUNJAB INTERMEDIATE CITIES IMPROVEMENT INVESTMENT PROGRAM (Wastewater Treatment Plant)

Summary of Field Density Tests

		Tootwit		Donth	Natural Moisture	Den	sity	Modified AASHTO Test	Compaction	Relative
Sr. No.	Location	Testpit No.	FDTs	Depth (m)	Content (%)	Bulk (kN/m³)	Dry (kN/m³)	Max. Dry Density (kN/m³)	OMC(%)	Compaction (%)
1		TP-1	FDT-1	0.9	18	18.5	15.7	19.3	12	81
2		TP-2	FDT-1	0.5	20	18.6	15.5	19.7	11	79
3	Ø	TP-3	FDT-2	0.6	22	18.5	15.3	-	-	1
4	Samples	TP-4	FDT-1	1.3	19	18.3	15.5	18.4	14	84
5	Sam	TP-5	FDT-1	1.1	27	18.6	14.7	17.9	15	82
6		TP-6	FDT-2	1.0	20	19.0	15.9	-	-	-
7	On-site	TP-7	FDT-1	0.8	21	18.7	15.5	19.1	12	81
8	O	TP-8	FDT-2	1.5	21	18.5	15.3	-	-	-
9		TP-9	FDT-1	0.7	21	18.5	15.4	18.7	14	82
10		TP-10	FDT-1	1.20	21	18.7	15.5	19.2	12	81

18-Km, Multan Road, Lahore. Ph: 042-7510942-43 Fax:042-7515267

SUMMARY OF FIELD DENSITY TEST

Client: PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM Location: TREATMENT PLANTS IN SIALKOT CITY Project:

Lab. Ref:

AJK ENGINEERS 14/2020

Remarks																
Specific Gravity																
Field Dry Density (g/cu.cm)																
M.C.%	18.43	20.36	21.53	18.64	26.73	19.72	20.55	21.15	20.63	20.59						
Location																
Depth (m)	0.90	0.50	09.0	1.30	1.10	1.00	0.80	1.50	0.70	1.20						
Sample No.	FDT-1				:											
BH / TP No.	TP-1	TP-2	TP-3	TP-4	TP-5	TP-6	TP-7	TP-8	TP-9	TP-10						

IKRAM ULLAH

Tested By:

MAHMOOD

Checked By:

04.03.2020

Dated:

Domidan	Cobbles		Gravels =		0.00 %	%	Sand =	= 1	21.4	21.40 %			Gilt	Qilt = 40 47 07	8		Clay	
Dominers	COUNTER	Ц	Coarse		Fine	_	Coarse	Medium	圓	4	Fine		т ПС	74.04	,		30.18 %	
Sieve Size	6"	3"	1 1/2"	1"	3/4"	1/2"	3/8"	#4	8#	#16	#30	#40	#100	# 200	0.05mm	0.01mm	# 200 0.05mm 0.01mm 0.005mm 0.002mm	,002mm
Passing %		•	•		•	•	100.00	100.00	99.94	90.66	98.05	90.03	89.11	78.60	70.12	41.04	30.18	8.54
Tested By		Jawa	ad Nasir	ا ا_		Checked By	By	Ŭ	Muhammad Ramzan	d Ramz		Approved By	ed By		Muha	mmad]	Muhammad Daniyal	

Muhammad Daniyal

77.51

89.20 # 200

91.14 #100

95.01

95.89

100,00

Checked By

Jawad Nasir

Tested By assing % Sieve Size

Approved By 93.89

Muhammad Ramzan

58.21 %

Silt =

Fine

Coarse

Fine 3/4"

Coarse

Cobbles

Boulders

TESTED BY	CHECKED BY
IKRAM ULLAH	MAHMOOD
	(all

ORAIN SIZE ARAETOIS								
CLIENT	AJK ENGINEERS							
PROJECT	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM							
SITE	TREATMENT PLANTS IN SIALKOT CITY (ON-SITE)							
BORE HOLE	TP-1	SAMPLE	BS-1					
TYPE	DISTURBED	DEPTH(m)	0.00-1.40					
SPECIMEN	1	DATE	27.02.2020					

SIEVE NO.	3"	2"	1"1/2	3/4"	3/8"	4	10	40	100	200
PASSING (%)	100	100	100	100	100	100	97	90	84	80

LAB. REF.	11/2020		
REMARKS:			

TESTED BY	CHECKED BY		
IKRAM ULLAH	MAHMOOD		
W.	(N)		

GIVAIN SIZE ANAL I SIS								
CLIENT	AJK ENGIN	AJK ENGINEERS						
PROJECT	PUNJAB IN	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM						
SITE	TREATMENT PLANTS IN SIALKOT CITY							
BORE HOLE	TP-2	P-2 SAMPLE BS-1						
TYPE	DISTURBED	DEPTH m	0.00-1.00					
SPECIMEN	1	DATE	28.02.2020					

ř	1		•			1	I	<u> </u>		
SIEVE NO.	3"	2"	1"1/2	3/4"	3/8"	4	10	40	100	200
PASSING (%)	100	100	100	100	100	100	99	96	87	84

LAB. REF.	11/2020		
REMARKS:			
,		 	

F	
TESTED BY	CHECKED BY
IKRAM ULLAH	MAHMOOD
M	(w)

ORAIN OIZE ANALTOID								
CLIENT	AJK ENGINEERS							
PROJECT	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM							
SITE	TREATMENT PLANTS IN SIALKOT CITY (ON-SITE)							
BORE HOLE	TP-3	SAMPLE	BS-1					
TYPE	DISTURBED	DEPTH(m)	0.00-1.50					
SPECIMEN	1	DATE	27.02.2020					

SIEVE NO.	3"	2"	1"1/2	3/4"	3/8"	4	10	40	100	200
PASSING (%)	100	100	100	100	100	100	98	96	94	93

LAB. REF.	11/2020		
REMARKS:			
-		 <u> </u>	
-		 	

TESTED BY	CHECKED BY
IKRAM ULLAH	манмоод
1/1	(a) li

CITAIN CIZE ANALI CIO							
CLIENT	AJK ENGINEERS						
PROJECT	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM						
SITE	TREATMENT PLANTS IN SIALKOT CITY (ON-SITE)						
BORE HOLE	TP-4	SAMPLE	BS-1				
TYPE	DISTURBED	DEPTH(m)	0.00-1.50				
SPECIMEN	1	DATE	27.02.2020				

SIEVE NO.	3"	2"	1"1/2	3/4"	3/8"	4	10	40	100	200
PASSING (%)	100	100	100	100	100	100	100	99	98	97

LAB. REF.	11/2020		
REMARKS:			
	·		
,			

TESTED BY	CHECKED BY
IKRAM ULLAH	МАНМООД
/w	(well

OKAIN OIZE ANAETOIO							
CLIENT	AJK ENGINEERS						
PROJECT	PUNJAB IN	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM					
SITE	TREATMENT PLANTS IN SIALKOT CITY						
BORE HOLE	TP-5	TP-5 SAMPLE BS-1					
TYPE	DISTURBED	DEPTH m	0.00-1.50				
SPECIMEN	1	DATE	28.02.2020				

SIEVE NO.	3"	2"	1"1/2	3/4"	3/8"	4	10	40	100	200
PASSING (%)	100	100	100	100	100	100	97	90	86	85

LAB. REF.	11/2020		
REMARKS:			
TALIM WAY			
		 - · · · · · · · · · · · · · · · · · · ·	
•	<u> </u>		

TESTED BY	CHECKED BY
IKRAM ULLAH	MAHMOOD
- Mr	(w)

CLIENT	AJK ENGINEERS							
PROJECT	PUNJAB IN	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM						
SITE	TREATMENT PLANTS IN SIALKOT CITY (ON-SITE)							
BORE HOLE	TP-6	SAMPLE	BS-1					
TYPE	DISTURBED	DEPTH(m)	0.00-1.50					
SPECIMEN	1	DATE	28.02.2020					

SIEVE NO.	3"	2"	1"1/2	3/4"	3/8"	4	10	40	100	200
PASSING (%)	100	100	100	100	100	100	93	87	82 ·	79

LAB. REF.	11/2020		
REMARKS:			

TESTED BY	CHECKED BY		
IKRAM ULLAH	MAHMOOD		
1/~	(wll		

		,, ,, ,,,, OILLE	- ANTAL I OIO
CLIENT	AJK ENGIN	EERS	
PROJECT	PUNJAB IN	TERMEDIAT	E CITIES INVESTMENT PROGRAM
SITE	TREATMEN	IT PLANTS II	N SIALKOT CITY (ON-SITE)
BORE HOLE	TP-7	SAMPLE	BS-1
TYPE	DISTURBED	DEPTH m	0.10-1.20
SPECIMEN	1	DATE	27.02.2020

OUT IT NO	211	211	d II a m	0/4"	0.4011		40	40	400	
SIEVE NO.	3"	2"	- 1"1/2	3/4"	3/8"	4	10	40	100	200
IPASSING (%)	100	100	100	100	100	100	100	99	96	95

LAB. REF.	11/2020	:	
REMARKS:			

TESTED BY	CHECKED BY
IKRAM ULLAH	MAHMOOD
1/1	(20

		TOTAL OILE	ANALIOIO
CLIENT	AJK ENGIN	EERS	
PROJECT	PUNJAB IN	TERMEDIAT	E CITIES INVESTMENT PROGRAM
SITE	TREATMEN	IT PLANTS II	N SIALKOT CITY (ON-SITE)
BORE HOLE	TP-8	SAMPLE	BS-1
TYPE	DISTURBED	DEPTH(m)	0.00-1.50
SPECIMEN	1	DATE	27.02.2020

SIEVE NO.	3"	2"	1"1/2	3/4"	3/8"	4	10	40	100	200
PASSING (%)	100	100	100	100	100	100	96	93	92	92

LAB. REF.	11/2020

REMARKS:			
•			
•	 	 	

TESTED BY	CHECKED BY
IKRAM ULLAH	манмоод
1/1	(ax)

		IVAIII OIZE	ANALIOIO
CLIENT	AJK ENGIN	EERS	
PROJECT	PUNJAB IN	TERMEDIAT	E CITIES INVESTMENT PROGRAM
SITE	TREATMEN	IT PLANTS II	N SIALKOT CITY (ON-SITE)
BORE HOLE	TP-9	SAMPLE	BS-1
TYPE	DISTURBED	DEPTH(m)	0.00-1.50
SPECIMEN	1	DATE	27.02.2020

SIEVE NO.	2"	2"	1"1/2	3/4"	3/8"	4	10	40	100	200
PASSING (%)	100	100	100	100	100	100	99	91	83	82

LAB REF. 11/2020
B (B. 1 (E)

REMARKS:				
	-	 	 	
	,	 	 	

GRAIN SIZE ANALYSIS

TESTED BY	CHECKED BY
IKRAM ULLAH	MAHMOOD
1/4	(w)

CLIENT	AJK ENGIN	IEERS				
PROJECT	PUNJAB IN	ITERMEDIAT	E CITIES INVESTMENT PROGRAM			
SITE	TREATMEN	TREATMENT PLANTS IN SIALKOT CITY				
BORE HOLE	TP-10	SAMPLE	BS-1			
TYPE	DISTURBED	DEPTH m	0.00-1.50			
SPECIMEN	1	DATE	28.02.2020			

SIEVE NO.	3"	2"	1"1/2	3/4"	3/8"	4	10	40	100	200
OILVE ITO.	<u> </u>			-					· · · · · · · · · · · · · · · · · · ·	
PASSING (%)	100	100	100	100	100	100	99	96	93	91

LAB. REF.	11/2020		
REMARKS:			
			

GRAIN SIZE ANALYSIS

TESTED BY	CHECKED BY
IKRAM ULLAH	манмоор
1/2	(w)

			- 7 (147 (E 1 010		
CLIENT	AJK ENGIŅ	EERS			
PROJECT	PUNJAB IN	TERMEDIAT	E CITIES INVESTMENT PROGRAM		
SITE	TREATMENT PLANTS IN SIALKOT CITY				
BORE HOLE	BA-1	SAMPLE	BS-1		
TYPE	DISTURBED	DEPTH m	0.20-1.20		
SPECIMEN	1	DATE	27.02.2020		

SIEVE NO.	3"	2"	1"1/2	3/4"	3/8"	4	10	40	100	200
PASSING (%)	100	100	100	100	10Ò	96	92	90	87	74

REMARKS:			
- -		 	

LAB. REF. 11/2020

GRAIN SIZE ANALYSIS

TESTED BY	CHECKED BY
IKRAM ULLAH	манмоод
The state of the s	(w)

CLIENT	AJK ENGIN	EERS			
PROJECT	PUNJAB IN	TERMEDIATI	E CITIES INVESTMENT PROGRAM		
SITE	TREATMENT PLANTS IN SIALKOT CITY				
BORE HOLE	BA-2	SAMPLE	BS		
TYPE	DISTURBED	DEPTH m	0.10-1.20		
SPECIMEN	1	DATE	28.02.2020		

SIEVE NO.	3"	2"	1"1/2	3/4"	3/8"	4	10	40	100	200
PASSING (%)	100	100	100	100	100	100	99	94	84	78

LAB. REF. 11/2020

GRAIN SIZE ANALYSIS

TESTED BY	CHECKED BY		
IKRAM ULLAH	манмоор		
1/2	(N)		

		NAIN OILL	ANALIOIO				
CLIENT	AJK ENGIN	IEERS					
PROJECT	PUNJAB IN	TERMEDIAT	E CITIES INVESTMENT PROGRAM				
SITE	TREATMEN	TREATMENT PLANTS IN SIALKOT CITY (ON-SITE)					
BORE HOLE	BA-3	BA-3 SAMPLE BS-1					
TYPE	DISTURBED	DEPTH m	0.10-1.00				
SPECIMEN	1	DATE	27.02.2020				

SIEVE NO.	3"	2"	1"1/2	3/4"	3/8"	4	10	40	100	200
PASSING (%)	100	100	100	100	100	100	99	97	91	84

REMARKS:			
	 		

LAB. REF. 24/2007

GRAIN SIZE ANALYSIS

TESTED BY	CHECKED BY		
IKRAM ULLAH	манмоор		
1/2	(No. 10)		

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. AITALIOIO					
CLIENT	AJK ENGIN	EERS						
PROJECT	PUNJAB IN	TERMEDIAT	E CITIES INVESTMENT PROGRAM					
SITE	TREATMEN	TREATMENT PLANTS IN SIALKOT CITY						
BORE HOLE	BAS-5	SAMPLE	BS					
TYPE	DISTURBED	DEPTH m						
SPECIMEN	1	DATE	28.02.2020					

SIEVE NO.	3"	2"	1"1/2	3/4"	3/8"	4	10	40	100	200
PASSING (%)	100	100	100	100	100	100	99	98	96	95

REMARKS:			
-	 		

LAB. REF. 11/2020

GRAIN SIZE ANALYSIS

TESTED BY	CHECKED BY			
IKRAM ULLAH	манмоор			
1/~	(20)			

). () (III O IEE	. AIIALI DIO					
CLIENT	AJK ENGIN	EERS						
PROJECT	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM							
SITE	TREATMEN	TREATMENT PLANTS IN SIALKOT CITY						
BORE HOLE	BAS-7	SAMPLE	BS					
TYPE	DISTURBED	DEPTH m						
SPECIMEN	1	DATE	28.02.2020					

SIEVE NO.	3"	2"	1"1/2	3/4"	3/8"	4	10	40	100	200
PASSING (%)	100	100	100	100	100	100	99	98	97	96

REMARKS:]		

LAB. REF. 11/2020

CLIEN	CLIENT			ISULT					RACTO	
-	1			NES PA			A	JK Engine	eers (Pvt.)	Ltd.
Project	Construction of	f Water S	upply &	Sewera	age Syste	m 		d	leco	on
Location	Sialkot City						Soil and Concre Testing Laboratroy (
BH / TP No.	BH-32			Job No) .		<u>-</u>		•	
Sample No.	SPT-01			Lab N	0	-	603			
Sample Depth (m)	1.00-1.45		•	Test S	tarted		11-Feb-20)		
Sampled Date	-		·	•	omplete		13-Feb-20			
	ATTEI	RBER	G L	IMI	ΓS (A	STM	[D 43	18) ——		
	LIQUI	D LIMIT						PLAST	IC LIMI	r
No. of Blows (N)		16	24	33					1	
Container No.		D-13	D-32	D-27			D	-17		D-19
Weight of Container	(g)	18.20	24.11	19.19			18	.36		19.12
Weight of Container +	Wet Soil (g)	33.23	39.21	34.21				.21		25.26
Weight of Container +		29.41	35.45			1		.11		24.13
Weight of Dry Soil (g)	11.21	11.34	11.35		_	1	.75		5.01
Weight of Water (g) Moisture Content (%)		3.82	3.76 33.16	3.67	1			.10	 	1.13 22.55
Liquid Limit	33	Plastic		32.55	23		Plasticity		10	
- 3	-									
36										
35										
€ 34										
Moisture Content (%)			*	ightrightarrow	~					
ပီ 32						-				
30 W 30										
29						-				
28			_						-	
27			25		No. of Blo	ws (N)				100
	· · · · · · · · · · · · · · · · · · ·								·	
Tested Nesrullha				checked ammad	l By Ramzan				roved By mad Dani	/a/wind

CLIEN	IT		CON	SULT	ANT			CONTR	RACTO	R	
-			1	NES PA	к		A	JK Engine	ers (Pvt.)) Ltd.	
Project	Construction o	f Water S	upply &	Sewer	age Syster	n		d	ec	on	
Location	Sialkot City						Soil and Concrete Testing Laboratroy (Pvt) Lt				Ltd
BH / TP No.	BH-33			Job N	0.		-				
Sample No.	SPT-02			Lab N	0.		603				
Sample Depth (m)	2.00-2.45			Test S	tarted		11-Feb-20	ı			
Sampled Date				Test C	Completed	l	13-Feb-20	l			
	ATTE	RBER	RG L	IMI	ΓS (A	STM	D 43	18)			
	LIQUI	D LIMIT						PLASTI	C LIMI	Т	
No. of Blows (N)		16	24	32							
Container No.		D-50	D-30	D-54			D	-57		D-34	
Weight of Container	(g)	18.06	24.01	18.23			18	.26		23.46	
Weight of Container +	Wet Soil_(g)	33.23	39.31	33.21			24	.15	<u> </u>	29.52	
Weight of Container +	Dry Soil (g)	29.37	35.50	29.55			22	.97		28.33	
Weight of Dry Soil (g	<u> </u>	11.31	11.49	11.32			4.	71		4.87	
Weight of Water (g)	·	3.86	3.81	3.66			1.	18	<u> </u>	1.19	
Moisture Content (%)		34.13	33.16	32.33	<u> </u>		25	.05	<u> </u>	24.44	
Liquid Limit	33	Plastic	Limit		25		Plasticity	Index	8		
37				-		- 1			1	· · · · · · · · · · · · · · · · · ·	\neg
36								-			
35					-						
§ 34	~										
Moisture Content (%)					$\overline{\Rightarrow}$						ヿ
Ö 32											
30											\exists
28			\perp								\exists
27	·					_					\exists
10			25		No. of Blow	/s (N)					10
Tested	Ву		C	hecked	і Ву			Appr	oved By		-
Nesrullha	Khan		Muha	mmad	Ramzan			Muhamn	nad Dani	yal	(A)

CLIENT	Γ			NSULTAN'	Т			ACTOR	_
-			1	NES PAK		A	JK Engine	ers (Pvt.) Lt	d.
Project	Construction of	Water S	Supply &	Sewerage S	System		d	eco	n
Location	Sialkot City							l and Concr Laboratroy (
BH / TP No.	BH-35			Job No.		<u>-</u>		•	
Sample No.	SPT-04	-		Lab No.		603			
Sample Depth (m)	4.00-4.45			Test Starte	ed	11-Feb-20)		
Sampled Date	, -			Test Comp	leted	13-Feb-20)		<u> </u>
	ATTER	RBEF	RG L	IMITS	(AST	M D 43	18)		
	LIQUI	LIMIT					PLASTI	C LIMIT	
No. of Blows (N)		18	27	35				1	
Container No.		D-39	D-20	D-43		D	-26	D-4	1 7
Weight of Container (g	g)	10.41	19.19	10.35		15	.39	17.	88
Weight of Container + V	Vet Soil (g)	25.26	34.15	25.11		21	.15	23.	23
Weight of Container + D	Ory Soil (g)	20.93	29.87	20.94		20	0.03	22.	21
Weight of Dry Soil (g)		10.52	10.68				.64	4.3	
Weight of Water (g)		4.33	4.28	4.17			.12	1.0	
Moisture Content (%) Liquid Limit	40	41.16 Plastic		-	<u></u> 24	Plasticity	Index	23. 16	56
				•					
44									
43									
42 41	<u> </u>								
Woisture Content (%) 41 40 39 38 38			\Rightarrow	*				 	
39 Gont					*				
38 Solution									
37							-		
36									
35									丰丰
34 10			25	No. o	f Blows (N)	+		+ +	10
Tested B	y		C	Checked By			Appro	ved By	
	Lhan			ımmad Ram			Muhamm		ETTOP

Const

CLII	ENT			NSULT					RACTOR	
				NES PA	K		A	JK Engine	ers (Pvt.)	Ltd.
Project	Construction o	f Water S	Supply &	& Sewera	age Syste	m		d	eco	n
Location	Sialkot City			1			Soil and Concrete Testing Laboratroy (Pvt) Ltd			
BH / TP No.	BH-38	Job No.				-	_			
Sample No.	SPT-02			Lab No) .		603			
Sample Depth (m)	2.00-2.45			Test St	arted		11-Feb-20			
Sampled Date				Test Co	ompleted	i	13-Feb-20			····
	ATTE	RBEF	RG L	IMI	rs (A	STM	I D 43	18)		
	LIQUI	D LIMIT						DI ACTI	C LIMIT	ı
No. of Blows (N)		17	26	35				- LASII	C LIMIT	•
Container No.		D-09	D-05	D-01			D-	35	Γ	D-14
Weight of Container	(g)	17.41	19.44	18.80			10	.49	1	9.18
Weight of Container	+ Wet Soil (g)	32.26	34.15	33.21			16	.52	2	5.32
Weight of Container	+ Dry Soil (g)	28.32	30.33	29.53			15	15.39 24.19		
Weight of Dry Soil	(g)	10.91	10.89	10.73			4.	90	5	5.01
Weight of Water (g)	3.94	3.82	3.68	<u>.</u>		1.	13	1	.13
Moisture Content (%	6)	36.11	35.08	34.30	<u> </u>		23	.06	2:	2.55
Liquid Limit	35	Plastic	Limit		23		Plasticity	Index	12	
39			· · · · · · · · · · · · · · · · · · ·					·		-
38										
37										
§ 36			\Rightarrow							
Woisture Content (%) 35 33 33 33 33					~					
Ö 34					•					
33 Woist		-,								
31										
30			_							
29 10			25	N	lo. of Blow	s (N)				10
		· 				- (11)	<u> </u>			
Teste				hecked 1	-				ved By	
Nesrullh	a Khan		Muha	mmad R	amzan			Muhamm	ad Daniya	hers

CLIEN	T		CON	SULT.	ANT			CONTR	RACTOR	
			<u> </u>	NES PA	К		A	JK Engine	ers (Pvt.) Ltd.	
Project	Construction o	f Water S	Supply &	Sewera	ige Syste	m		d	ecor	<u> </u>
Location	Sialkot City				· .				il and Concrete Laboratroy (Pv	
BH / TP No.	BH-38			Job No).		<u>.</u>			
Sample No.	SPT-06			Lab No	D.		603			
Sample Depth (m)	6.00-6.45			Test St	arted		11-Feb-20)		
Sampled Date	-				omplete		13-Feb-20			
	ATTE	RBEI	RG L	IMI	ΓS (A	STM	I D 43	18)		
	LIQU	D LIMIT		:				PLAST	IC LIMIT	
No. of Blows (N)										
Container No.						<u> </u>	<u> </u>			$/\!\!\!\!/$
Weight of Container	(g)				Y_{-}	<u> </u>				
Weight of Container +	Wet Soil (g)	ļ .	1	Ň.	P	1		,	<u> </u>	
Weight of Container +	Dry Soil (g)	ļ	\perp	1	ļ			N	N.P	
Weight of Dry Soil (3)	1	/						1	
Weight of Water (g)		1/	-		ļ					
Moisture Content %	·	/ _		<u></u>	1					
Liquid Limit		Plastic	e Limit				Plasticity	Index		
3	0		· 1	· · · · ·			· · · · · · · · · · · · · · · · · · ·		,	
			<u>.</u>							
2	9									
(%)			 						1	
Moisture Content (%)	8									
file C]	
rs: 22	.'				<u> </u>					٠,
2	26									.* .
			<u> </u>						4	
2	10		1					1	00	
	IV			No. o	fBlows (N	i)				
Tested	l By		(Checked	Ву	٠.	1.	Аррі	roved By	
Nesruliha Khan Mu			hammad Ramzan			· [Muhammad Daniyan			

20 ×

CLIEN	NT		CON	SULT	ANT		CONTRACTOR				
-			Ì	NES PA	K		A	JK Engine	ers (Pvt.)	Ltd.	
Project	Construction of	f Water S	Supply &	ε Sewer	age Syste	em		d	leco	on	
Location	Sialkot City			r				So	il and Co Laboratro	ncrete	Ltd
BH / TP No.	BH-39			Job N	0.		<u>.</u>				
Sample No.	SPT-01			Lab N	0.		603				
Sample Depth (m)	1.00-1.45			Test S	tarted		11-Feb-20	1			
Sampled Date	-			Test C	omplete	d	13-Feb-20				
	ATTEI	RBEF	RG L	IMI	ΓS (A	STM	I D 43	18)			
·	LIQUI	D LIMIT						PLASTI	C LIMI	Г	
No. of Blows (N)		18	27	34					- ERVIT	•	
Container No.		D-48	D-25	D-03			D	-58		D-36	
Weight of Container	(g)	18.48	15.14	17.91			18	.93		10.71	
Weight of Container +	Wet Soil (g)	33.36	30.05	32.26			24	.29	<u> </u>	16.22	
Weight of Container +	Dry Soil (g)	29.18	25.93	28.36	-		23	.32		15.24	_
Weight of Dry Soil (g	g)	10.70	10.79	10.45				39		4.53	
Weight of Water (g)		4.18	4.12	3.90	-		1	97		0.98	_
Moisture Content (%)		39.07	38.18	37.32	22	<u> </u>	Plasticity	.12	16	21.52	_
Liquid Limit	38	riastic	Pillit				lasticity	Index	10		_
42			i						!		\Box
41											
40								-		-	\dashv
% ³⁹				~							\exists
Moisture Content (%) 38 38 39 39 30 30 30 30 30 30 30 30 30 30 30 30 30					V						\exists
36 - Sisture											\exists
35											\exists
34											
33											
32 10			25		No. of Blo	ws (N)					10
Tested	Ву	<u> </u>		hecked	Ву			Appr	oved By		
Nesrullha	Khan		Muha	ammad I	Ramzan			Muhamn	nad Daniy	al Riji	9
										100	le

LIQUID & PLASTIC LIMIT

(ASTM D-4318)

PROJECT	PUNJAB INTE	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM								
LOCATION	TREATMENT	PLANTS IN SIA	LKOT CITY (On-site)						
CLIENT	AJK ENGINEE	AJK ENGINEERS								
BOREHOLE	TP-1	SAMPLE	BS-1	TYPE	DISTURBED					
LAB. REF.	11/2020	DEPTH m	0.00-1.40	DATE	27.02.2020					

LIQUID LIMIT

Number of Blows N	15	20	24	30	
Moisture Content %	39.18	38.58	38.24	37.77	

			· ·
Moisture Content %	22.07	22.11	22.16

LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
38	22	16

TESTED BY , ,	CHECKED BY
TARIQ \ w	MAHMOOD
	(2)

LIQUID & PLASTIC LIMIT

(ASTM D-4318)

PROJECT	PUNJAB INTE	RMEDIATE CIT	FIES INVESTA	IENT PROG	RAM				
LOCATION	TREATMENT	PLANTS IN SIA	LKOT CITY (On-site)					
CLIENT	AJK ENGINEE	AJK ENGINEERS							
BOREHOLE	TP-2	SAMPLE	BS-1	TYPE	DISTURBED				
LAB. REF.	11/2020	DEPTH m	0.00-1.00	DATE	28.02.2020				

LIQUID LIMIT

Number of Blows N	14	20	25	30	
Moisture Content %	43.28	42.59	42.04	41.67	

Moisture Content % 24.10	24.15	24.19

LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
42	24	18

TESTED BY ,	CHECKED BY
TARIQ (g)	MAHMOOD
	(20

LIQUID & PLASTIC LIMIT

(ASTM D-4318)

PROJECT	PUNJAB INTE	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM				
LOCATION	TREATMENT	TREATMENT PLANTS IN SIALKOT CITY (On-site)				
CLIENT	AJK ENGINEE	RS				
BOREHOLE	TP-3	SAMPLE	BS-1	TYPE	DISTURBED	
LAB. REF.	11/2020	DEPTH m	0.00-1.50	DATE	28.02.2020	

LIQUID LIMIT

Number of Blows N	19	23	28	32	
Moisture Content %	51.80	51.24	50.73	50.34	

Moisture Content %	26.99	27.05	27.11

LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
51	27	24

TESTED BY	CHECKED BY
TARIQ	MAHMOOD
201	(DD

LIQUID & PLASTIC LIMIT

(ASTM D-4318)

PROJECT	PUNJAB INTE	RMEDIATE CI	TIES INVESTA	MENT PROG	RAM		
LOCATION	TREATMENT	TREATMENT PLANTS IN SIALKOT CITY (On-site)					
CLIENT	AJK ENGINEE	RS					
BOREHOLE	TP-4	SAMPLE	BS-1	TYPE	DISTURBED		
LAB. REF.	11/2020	DEPTH m	0.00-1.50	DATE	27.02.2020		

LIQUID LIMIT

Number of Blows N	18	22	27	31	
Moisture Content %	50.14	49.48	49.00	48.67	

Moisture Content %	27.11	27.15	27.20

LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
49	27	22

TESTED BY	CHECKED BY
TARIQ CV	MAHMOOD
	(2)0

LIQUID & PLASTIC LIMIT

(ASTM D-4318)

PROJECT	PUNJAB INTE	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM			
LOCATION	TREATMENT	TREATMENT PLANTS IN SIALKOT CITY (On-site)			
CLIENT	AJK ENGINEE	AJK ENGINEERS			
BOREHOLE	TP-5	SAMPLE	BS-1	TYPE	DISTURBED
LAB. REF.	11/2020	DEPTH m	0.00-1.50	DATE	28.02.2020

LIQUID LIMIT

Number of Blows N	13	18	23	28	
Moisture Content %	60.04	59.38	58.87	58.44	

Moisture Content %	30.74	30.80	30.85

LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
59	31	28

TESTED BY	CHECKED BY
TARIQ	МАНМООД
	(D)

LIQUID & PLASTIC LIMIT

(ASTM D-4318)

PROJECT	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM				
LOCATION	TREATMENT	TREATMENT PLANTS IN SIALKOT CITY (On-site)			
CLIENT	AJK ENGINEERS				
BOREHOLE	TP-6	SAMPLE	BS-1	TYPE	DISTURBED
LAB. REF.	11/2020	DEPTH m	0.00-1.50	DATE	28.02.2020

LIQUID LIMIT

Number of Blows N	15	19	24	30	
Moisture Content %	44.53	44.12	43.63	43.26	

Moisture Content %	24.83	24.89	24.96

LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
44	25	19

TESTED BY \	CHECKED BY
TARIQ	МАҢМООD
	(w)

LIQUID & PLASTIC LIMIT

(ASTM D-4318)

PROJECT	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM					
LOCATION	TREATMENT PLANTS IN SIALKOT CITY (On-site)					
CLIENT	AJK ENGINEE	AJK ENGINEERS				
BOREHOLE	TP-7 SAMPLE BS-1 TYPE DISTURBED					
LAB. REF.	11/2020	DEPTH m	0.00-1.20	DATE	28.02.2020	

LIQUID LIMIT

Number of Blows N	15	20	26	31	
Moisture Content %	50.70	50.04	49.46	49.05	

Moisture Content %	26.63	26.70	26.76

LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
50	27	23

TESTED BY	1	CHECKED BY
TARIQ		МАНМООО
	1	(a) l

LIQUID & PLASTIC LIMIT

(ASTM D-4318)

PROJECT	PUNJAB INTE	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM					
LOCATION	TREATMENT	TREATMENT PLANTS IN SIALKOT CITY (On-site)					
CLIENT	AJK ENGINEE	AJK ENGINEERS					
BOREHOLE	TP-8	TP-8 SAMPLE BS-1 TYPE DISTURBED					
LAB. REF.	11/2020	DEPTH m	0.00-1.50	DATE	27.02.2020		

LIQUID LIMIT

Number of Blows N	19	24	28	32	
Moisture Content %	51.01	50.35	49.84	49.49	

Moisture Content %	27.23	27.28	27.32

LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
50	27	23

TESTED BY *	CHECKED BY
TARIQ (iv	MAHMOOD
	(NE

LIQUID & PLASTIC LIMIT

(ASTM D-4318)

PROJECT	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM						
LOCATION	TREATMENT F	TREATMENT PLANTS IN SIALKOT CITY (On-site samples)					
CLIENT	,						
BOREHOLE	TP-9	TP-9 SAMPLE BS-1 TYPE DISTURBED					
LAB. REF.	11/2020	DEPTH m	0.00-1.50	DATE	27.02.2020		

LIQUID LIMIT

Number of Blows N	18	23	28	32	
Moisture Content %	46.04	45.38	44.85	44.48	

Moisture Content %	25.19	25.23	25.28	

LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
45	25	20

TESTED BY .	CHECKED BY	
TARIQ	МАНМООД	
	(m.1)	

LIQUID & PLASTIC LIMIT

(ASTM D-4318)

PROJECT	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM				
LOCATION	TREATMENT PLANTS IN SIALKOT CITY (On-site)				
CLIENT	AJK ENGINEERS				
BOREHOLE	BA-1 SAMPLE BS TYPE DISTURBED				
LAB. REF.	11/2020	DEPTH m	0.20-1.20	DATE	28.02.2020

LIQUID LIMIT

Number of Blows N	15	20	25	31	
Moisture Content %	48.99	48.33	47.80	47.27	

Moisture Content %	26.65	26.75	26.82

LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
48	27	21

TESTED BY	•	CHECKED BY
TARIQ	مسمه	МАНИООО
		(d)

LIQUID & PLASTIC LIMIT

(ASTM D-4318)

PROJECT	PUNJAB INTE	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM				
LOCATION	TREATMENT	TREATMENT PLANTS IN SIALKOT CITY (On-site)				
CLIENT	AJK ENGINEE	AJK ENGINEERS				
BOREHOLE	BA-2	BA-2 SAMPLE BS TYPE DISTURBED				
LAB. REF.	11/2020	DEPTH m	0.10-1.20	DATE	28.02.2020	

LIQUID LIMIT

Number of Blows N	15	19	24	30	
Moisture Content %	45.37	44.73	44.20	43.54	

Moisture Content %	25.05	25.09	25.13

	,	
LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
44	25	19

TESTED BY	,	CHECKED BY
TARIQ	Com	МАНМООД
	701	(w)O

LIQUID & PLASTIC LIMIT

(ASTM D-4318)

PROJECT	PUNJAB INTE	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM					
LOCATION	TREATMENT	TREATMENT PLANTS IN SIALKOT CITY					
CLIENT	AJK ENGINEE	AJK ENGINEERS					
BOREHOLE	BA-3 SAMPLE BS TYPE DISTURBED						
LAB. REF.	11/2020	DEPTH m	0.010-1.00	DATE	27.02.2020		

LIQUID LIMIT

Number of Blows N	18	22	27	31	
Moisture Content %	34.76	34.25	33.78	33.45	

Moisture Content %	20.97	21.02	21.08

LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
34	21	13

TESTED BY	CHECKED BY
TARIQ am	М АНМООD
	(nl)

LIQUID & PLASTIC LIMIT

(ASTM D-4318)

PROJECT	PUNJAB INTE	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM					
LOCATION	TREATMENT	TREATMENT PLANTS IN SIALKOT CITY (On-site)					
CLIENT	AJK ENGINEE	AJK ENGINEERS					
BOREHOLE	BAS-5	BAS-5 SAMPLE BS TYPE DISTURBED					
LAB. REF.	11/2020	DEPTH m	-	DATE	28.02.2020		

LIQUID LIMIT

Number of Blows N	15	19	24	29	
Moisture Content %	34.71	34.19	33.67	33.32	ì

Moisture Content %	20.96	21.01	21.06

LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
34	21	13

TESTED BY	CHECKED BY
TARIQ	МАНМООД
	(Non)

LIQUID & PLASTIC LIMIT

(ASTM D-4318)

PROJECT	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM					
LOCATION	TREATMENT F	TREATMENT PLANTS IN SIALKOT CITY (On-site)				
CLIENT	AJK ENGINEERS					
BOREHOLE	BAS-7 SAMPLE BS TYPE DISTURBED					
LAB. REF.	11/2020	DEPTH m		DATE	28.02.2020	

LIQUID LIMIT

Number of Blows N	14	20	25	30	
Moisture Content %	45.22	44.56	44.01	43.59	

· ·			
Moisture Content %	25.04	25.08	25.11

LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
44	25	19

TESTED BY	CHECKED BY
TARIQ	МАНМООД
	(a)O

18-Km, Multan Road Lahore. Ph: 042-7510942, Fax: 042-7510944

CONSOLIDATION TEST

CLIENT	AJK ENGI	AJK ENGINEERS			
PROJECT	PUNJAB INTE	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM			
SITE	TREATME	TREATMENT PLANTS IN SIALKOT CITY			
BORE HOLE	TP-2	SAMPLE	BS-1		
SPECIMEN	1	TYPE	REMOULDED		
DEPTH m	0.00-1.00	DATE	27.02.2020		

Operator	Checked by
Nisar Ahmad	Manmond

SOIL AND SPECIMEN CHARACTERISTICS

Initial Bulk Density	2173	Kg/m ³
Final Bulk Density	2275	Kg/m ³
Initial Water Content	11.16	%
Final Water Content	12.51	%
Initial Specimen Height	20.00	mm
Specimen Diameter	63.70	mm
Specific Gravity App.	2.713	
Initial Void Ratio	0.388	

TEST CHARACTERISTICS

No. of Loading Steps	3
No. of unloading Steps	

LAB REF. 11/2019

	1.00E-02 ·			
()	1.00E-03			
Cv (sq.cm/sec)	1.00E-04			
Š	1.00E-05			
	1.00E-06 0.0	1 0.1	1	10
		rtical Consolid	ation Stress	(MPa)

Pressure	Void Ratio	Cv
Мра		cm ² /sec
0		
0.392	0.381	1.56E-04
0.785	0.363	1.33E-04
1.569	0.342	1.22E-04

REMARKS:		

18-Km, Multan Road Lahore. Ph: 042-7510942, Fax: 042-7510944

CONSOLIDATION TEST

CLIENT	AJK ENGI	AJK ENGINEERS			
PROJECT	PUNJAB INTE	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM			
SITE	TREATME	TREATMENT PLANTS IN SIALKOT CITY			
BORE HOLE	TP-5	TP-5 SAMPLE BS-1			
SPECIMEN	1	TYPE	REMOULDED		
DEPTH m	0.00-1.50	DATE	04.03.2020		

SOIL AND SPECIMEN CHARACTERISTICS

Initial Bulk Density	1881	Kg/m ³
Final Bulk Density	2087	Kg/m³
Initial Water Content	14.55	%
Final Water Content	21.48	%
Initial Specimen Height	20.00	mm
Specimen Diameter	63.70	mm
Specific Gravity App.	2.730	
Initial Void Ratio	0.663	

TEST CHARACTERISTICS

No. of Loading Steps	3
No. of unloading Steps	

LAB REF. 11/2019

	1.00E-02			
(Ç)	1.00E-03			
Cv (sq.cm/sec)	1.00E-04	+	•	
Š	1.00E-05			
	1.00E-06	0.1	1	10
		U. I I Consolida	tion Stress	

Pressure	Void Ratio	Cv
Мра		cm ² /sec
0		
0.196	0.658	1.95E-04
0.392	0.633	1.53E-04
0.785	0.589	1.25E-04
	İ	

18-Km, Multan Road Lahore. Ph: 042-7510942, Fax: 042-7510944

CONSOLIDATION TEST

CLIENT	AJK ENGI	NEERS		
PROJECT	PUNJAB INTE	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM		
SITE	TREATMENT PLANTS IN SIALKOT CITY			
BORE HOLE	TP-9	TP-9 SAMPLE BS-1		
SPECIMEN	1	TYPE	REMOULDED	
DEPTH m	0.00-1.50	DATE	27.02.2020	

Operator	Checked by
Nisar Ahmad	Matingood

SOIL AND SPECIMEN CHARACTERISTICS

Initial Bulk Density	2185	Kg/m ³
Final Bulk Density	2231	Kg/m ³
Initial Water Content	13.63	%
Final Water Content	13.54	%
Initial Specimen Height	20.00	mm
Specimen Diameter	63.70	mm
Specific Gravity App.	2.684	
Initial Void Ratio	0.396	

TEST CHARACTERISTICS

No. of Loading Steps	3
No. of unloading Steps	

LAB REF. 11/2019

	1.00E-02	
(5)	1.00E-03 -	
Cv (sq.cm/sec)	1.00E-04	-
Š	1.00E-05 -	
	1.00E-06 - 0.01 0.1	1 10
	Vertical Consolidation S	tress (MPa)

Pressure	Void Ratio	Cv
Мра		cm ² /sec
0		
0.392	0.395	2.21E-04
0.785	0.384	1.65E-04
1.569	0.366	1.37E-04
ļ		
1	}	
	ì	
	_	

18-Km, Multan Road Lahore. Ph: 042-7510942, Fax: 042-7510944

CONSOLIDATION TEST

CLIENT	AJK ENGI	AJK ENGINEERS		
PROJECT	PUNJAB INTE	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM		
SITE	TREATME	TREATMENT PLANTS IN SIALKOT CITY		
BORE HOLE	BA-1	BA-1 SAMPLE BS		
SPECIMEN	1	TYPE	REMOULDED	
DEPTH m	0.10-1.20	DATE	04.03.2020	

Operator	Checked by
Nisar Ahmad	Mahmood
NNSAIL	

SOIL AND SPECIMEN CHARACTERISTICS

Initial Bulk Density	1958	Kg/m ³
Final Bulk Density	2168	Kg/m ³
Initial Water Content	13.48	%
Final Water Content	17.62	%
Initial Specimen Height	20.00	mm
Specimen Diameter	63.70	mm
Specific Gravity App.	2.737	
Initial Void Ratio	0.586	

TEST CHARACTERISTICS

No. of Loading Steps	3
No. of unloading Steps	

LAB REF. 11/2019

	1.00E-02		
()	1.00E-03		
Cv (sq.cm/sec)	1.00E-04		
) 2	1.00E-05		
	1.00E-06 0.01 0.1	1	10
	Vertical Consolidation	on Stress (MPa)

Pressure	Void Ratio	Cv
Mpa		cm ² /sec
0		
0.392	0.549	1.70E-04
0.785	0.516	1.46E-04
1.569	0.485	1.22E-04
	l	

18-Km, Multan Road Lahore. Ph: 042-7510942, Fax: 042-7510944

CONSOLIDATION TEST

CLIENT	AJK ENGI	AJK ENGINEERS		
PROJECT	PUNJAB INTE	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM		
SITE	TREATME	TREATMENT PLANTS IN SIALKOT CITY		
BORE HOLE	BA-2	BA-2 SAMPLE BS		
SPECIMEN	1	1 TYPE REMOULDED		
DEPTH m	0.10-1.20	DATE	04.03.2020	

Operator	Checked by
Nisar Ahmad	Mahmodd)
Wille	

SOIL AND SPECIMEN CHARACTERISTICS

Initial Bulk Density	1997	Kg/m ³
Final Bulk Density	2161	Kg/m³
Initial Water Content	12.63	%
Final Water Content	16.86	%
Initial Specimen Height	20.00	mm
Specimen Diameter	63.70	mm
Specific Gravity App.	2.695	
Initial Void Ratio	0.520	

TEST CHARACTERISTICS

No. of Loading Steps	3
No. of unloading Steps	

LAB REF. 11/2019

	1.00E-02			
	1.00E-03			
Cv (sq.cm/sec)	1.00E-04		 	
(sd.c	1.002-04			
ે	1.00E-05			
	1.00E-06			
	0.01	0.1	1	10
	Vertic	al Consolidati	ion Stress	(MPa)

Pressure	Void Ratio	Cv
Мра		cm²/seċ
0	-	
0.098	0.507	2.03E-04
0.196	0.486	1.62E-04
0.392	0.457	1.30E-04
j		

18-Km, Multan Road Lahore. Ph: 042-7510942, Fax: 042-7510944

CONSOLIDATION TEST

CLIENT	AJK ENGI	NEERS		
PROJECT	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM			
SITE	TREATME	TREATMENT PLANTS IN SIALKOT CITY		
BORE HOLE	BA-3	BA-3 SAMPLE BS		
SPECIMEN	1	TYPE	REMOULDED	
DEPTH m	0.10-1.00	DATE	27.02.2020	

ecked by
ahmood

SOIL AND SPECIMEN CHARACTERISTICS

Initial Bulk Density	2149	Kg/m ³
Final Bulk Density	2256	Kg/m³
Initial Water Content	10.64	%
Final Water Content	13.21	%
Initial Specimen Height	20.00	mm
Specimen Diameter	63.70	mm
Specific Gravity App.	2.712	
Initial Void Ratio	0.396	

TEST CHARACTERISTICS

No. of Loading Steps	3
No. of unloading Steps	

LAB REF. 11/2019

	1.00E-02			
(i)	1.00E-03			
Cv (sq.cm/sec)	1.00E-04			
3	1.00E-05			
	1.00E-06	0.1	1 10	
			Stress (MPa)	

Pressure	Void Ratio	Cv
Мра		cm²/sec_
0		
0.049	0.389	2.20E-04
0.098	0.378	1.64E-04
0.196	0.361	1.36E-04

18-Km, Multan Road Lahore. Ph: 042-7510942, Fax: 042-7510944

CONSOLIDATION TEST

CLIENT	AJK ENG	INEERS		
PROJECT	PUNJAB INTE	RMEDIATE CITIE	ES INVESTMENT PROGRAM	
SITE	TREATME	ENT PLANTS	S IN SIALKOT CITY	
BORE HOLE	BAS-5	BAS-5 SAMPLE BS		
SPECIMEN	1	TYPE	REMOULDED	
DEPTH m		DATE	04.03.2020	

Checked by
Mahmood

SOIL AND SPECIMEN CHARACTERISTICS

Initial Bulk Density	1924	Kg/m ³
Final Bulk Density	2124	Kg/m³
Initial Water Content	11.49	%
Final Water Content	18.74	%
Initial Specimen Height	20.00	mm
Specimen Diameter	63.70	mm
Specific Gravity App.	2.697	
Initial Void Ratio	0.563	

TEST CHARACTERISTICS

No. of Loading Steps	3
No. of unloading Steps	

LAB REF. 11/2019

	1.00E-02 -				
sec)	1.00E-03 -				
Cv (sq.cm/sec)	1.00E-04 -				
3	1.00E-05 -				
	1.00E-06 -	21	0.1	1	10
				ation Stress	

Pressure	Void Ratio	Cv
Мра		cm ² /sec
0		
0.098	0.552	3.13E-04
0.196	0.531	2.81E-04
0.392	0.508	2.09E-04

REMARKS:

18-Km, Multan Road Lahore. Ph: 042-7510942, Fax: 042-7510944

CONSOLIDATION TEST

CLIENT	AJK ENG	INEERS	
PROJECT	PUNJAB INTE	RMEDIATE CITIE	S INVESTMENT PROGRAM
SITE	TREATME	ENT PLANTS	S IN SIALKOT CITY
BORE HOLE	BAS-7	SAMPLE	BS
SPECIMEN	1	TYPE	REMOULDED
DEPTH m		DATE	27.02.2020

SOIL AND SPECIMEN CHARACTERISTICS

Initial Bulk Density	2070	Kg/m ³
Final Bulk Density	2204	Kg/m³
Initial Water Content	15.10	%
Final Water Content	15.16	%
Initial Specimen Height	20.00	mm
Specimen Diameter	63.70	mm
Specific Gravity App.	2.745	
Initial Void Ratio	0.526	

TEST CHARACTERISTICS

No. of Loading Steps	3
No. of unloading Steps	

LAB REF. 11/2019

	1.00E-02		
	1.00E-03		
Cv (sq.cm/sec)	1.00E-04		
S S	1.00E-05		
	1.00E-06 0.01	0.1 1	10
	Vertical 0	Consolidation Stres	s(MPa)

Pressure	Void Ratio	Cv
Мра		cm ² /sec
0		
0.392	0.498	1.39E-04
0.785	0.466	1.01E-04
1.569	0.434	9.65E-05

REMARKS:

18-Km, Multan Road, Lahore. Ph: 042-7510942-43 Fax:042-7515267 GEOTECHNICAL TESTING LABORATORIES

SUMMARY OF SWELL PRESSURE TEST RESULTS

PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM Location: TREATMENT PLANTS IN SIALKOT CITY Project:

Lab. Ref: Client:

AJK ENGINEERS 11/20

Nisar Ahmad Tested By:

Mahmood Checked By:

Dated:

27.02.2020

H / TP	Sample	Depth	Location	Free swell	DENSITY (g/cu.cm)	(g/cu.cm)	Swell	Ramorke
	No.	(m)	Location	%	Bulk	Dry	(kg/cm²)	Nollidi No
TP-2	BS-1	0.00-1.00					2.667	
TP-9	BS-1	0.00-1.50					1.804	
BA-3	BS	0.10-1.00					0.314	
3AS-7	BS						2.040	

18-Km, Multan Road, Lahore. Ph: 042-7510942-43 Fax:042-7515267 GEOTECHNICAL TESTING LABORATORIES

SUMMARY OF SWELL PRESSURE TEST RESULTS

Project: PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM Location: TREATMENT PLANTS IN SIALKOT CITY

Location

Depth $\widehat{\mathbf{E}}$

Sample

BH/TP

Š.

0.20-1.20 0.00-1.50

TP-5 BA-1

BAS-5

Client: Lab. Ref:

AJK ENGINEERS 11/20

Remarks Pressure (kg/cm²) Swell 2.353 0.628 0.706 DENSITY (g/cu.cm) Dry Bulk Free swell

Nisar Ahmad NU 394 Tested By:

Mahmood Checked By:

04.03.2020

Dated:

18-Km, Multan Road, Lahore. Ph: 042-7510942-43 Fax:042-7515267 GEOTECHNICAL TESTING LABORATORIES

SUMMARY OF MV

Project: PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM Location: TREATMENT PLANTS IN SIALKOT CITY

AJK ENGINEERS 11/2020

Client: Lab. Ref:

ŗ																-	ij	_	_
	Remarks																		
	91	2.02E-05			2.75E-05														
	∞	3.25E-05-	1.63E-05		5.48E-05														
	4	1.15E-05	2.05E-05		4.69E-05														
	7		1.15E-05	1.24E-04															
	1			1.55E-04															
	0.5			1.15E-05															
	Depth (m)	0.00-1.00	0.00-1.50	0.10-1.00	4.00														
	Sample #	BS-1	BS-1	BS	BS														
	BH #	TP-2	TP-9	BA-3	BAS-7														

Nisar Ahmad Tested By:

Mahmood Checked By:

27.02.2020

Dated:

18-Km, Multan Road, Lahore. Ph: 042-7510942-43 Fax:042-7515267 GEOTECHNICAL TESTING LABORATORIES

SUMMARY OF MV

PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM Project:

Location: TREATMENT PLANTS IN SIALKOT CITY

AJK ENGINEERS 11/2020 Client: Lab. Ref:

									 		 		 	 	 	 	 	_
	Remarks																	
,	16		2.64E-05															_
,	8	7.01E-05	5.32E-05															
	4	7.57E-05	6.07E-05	9.65E-05	7.81E-05													
	2	1.43E-05		1.46E-04	1.38E-04													
	1			8.36E-05	7.24E-05													
,	0.5																	
Depth	(m)	0.00-1.50	0.20-1.20	0.10-1.20														
Sample	#	BS-1	BS	BS	BS		i)											
BH	#	TP-5	BA-1	BA-2	BAS-5			:										

Nisar Ahmad Tested By:

Mahmood Checked By:

Dated:

04.03.2020

COMPACTION TEST

SOILCON GEOTECHNICAL TESTING LABORATORIES

18-Km Multan Road Lahore, Ph.No: 042-7510942-3 Fax No: 7510944

Test Method: Modified AASHTO T-180 (Method A)

Dia of Mould: 4.0 inch

No of Blows: Test Pit No:

25

No of Layers TP-1 Sample No.

5 BS-1 Volume of Mould:

938 cm³

Drop:

18 inch

Wt of Hammer:

10 lbs

Depth (m):

Optimum Mois	ture Conte	nt (%)	11.75	Maximu	1.970 g/cm ³				
Project: PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM									
Location :	TREATMENT PLANTS IN SIALKOT CITY Client: AJK ENGINEERS								
Tested By) Checked	l By	(P2	Dated	LAB. REF			
Azmat	XI /II/	Mahmo	od		22.02.2020	11/2020			

REMARKS:			

GEOTECHNICAL TESTING LABORATORIES, 18-Km, MULTAN ROAD, LAHORE

C.B.R. TEST

No.of Blows per Layer	65	30	10		
CBR Value at 0.1 in %				COMPACTION	MODIFIED
CBR Value at 0.2 in %	1.0	0.5	0.3	M.D.D. g/cu.cm	1.970
Dry Density g/ cm ³	1.970	1.871	1.792	O.M.C %	11.75
Moisture Content %	11.69	11.69	11.69		<u> </u>
Absorption %	2.28	5.52	7.93		
Swelling %		3.73			

			,		'				
TESTEI AZM		$\mathcal{M}_{\mathcal{A}}$			CKED BY: HMOOD ~	I I I I I I I I I I I I I I I I I I I			
LAB REF. NO:	11/2020	DATE	28.02	2.2020					
TP/ BH NO:	TP-1	SAMPLE	E NO:	BS-1	DEPTH (m)	0.00-1.40			
LOCATION:	CATION: TREATMENT PLANTS IN SIALKOT CITY CLIENT					AJK ENGINEERS			
PROJECT:	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM								

COMPACTION TEST

SOILCON GEOTECHNICAL TESTING LABORATORIES

18-Km Multan Road Lahore, Ph.No: 042-7510942-3 Fax No: 7510944

BS-1

Test Method: Modified AASHTO T-180 (Method A)

Dia of Mould: 4.0 inch

No of Blows: No of Layers 25 Test Pit No:

TP-2 Sample No.

Volume of Mould: 938 cm³

Drop:

18 inch 10 lbs

Wt of Hammer: Depth (m):

	ture Content (%)		num Dry Density	2.009 g/cm ³						
Project:	roject: PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM									
Location:	TREATMENT PLANT	S IN SIALKOT CITY	Client: AJK ENGI	NEERS						
Tested By	// // Checked	d By	Dated	LAB. REF						
Azmat	- Mahme	ood u	22.02.2020	11/2020						

REMARKS:	_
	 _

COMPACTION TEST

SOILCON GEOTECHNICAL TESTING LABORATORIES

18-Km Multan Road Lahore, Ph.No: 042-7510942-3 Fax No: 7510944

Test Method: Modified AASHTO T-180 (Method A)

Dia of Mould: 4.0 inch

No of Blows: Test Pit No:

25 No of Layers TP-4 Sample No.

BS-1

Volume of Mould: 938 cm³

Drop:

18 inch

Wt of Hammer:

10 lbs

Depth (m):

Optimum Mois	ture Content (%)	14.01 Maxin	num Dry Density	1.880 g/cm ³
Project:	PUNJAB INTERMEDI	ATE CITIES INVEST	MENT PROGRAM	
Location:	PREATMENT PLANT	S IN SIALKOT CITY	Client: AJK ENGI	NEERS
Tested By /	/ // Checked	l By	Dated	LAB. REF
Azmat	Mahmo	ood	22.02.2020	11/2020

REMARKS:	

GEOTECHNICAL TESTING LABORATORIES, 18-Km, MULTAN ROAD, LAHORE

C.B.R. TEST

(AASHTO T-193)

No.of Blows per La	yer	65	30	10		
CBR Value at 0.1 in	ı %				COMPACTION	MODIFIED
CBR Value at 0.2 in	ı %	0.6	0.3	0.1	M.D.D. g/cu.cm	1.880
Dry Density	g/ cm ³	1.879	1.784	1.672	O.M.C %	14.01
Moisture Content	%	13.45	13.45	13.45		
Absorption	%	3.56	6.17	9.08		
Swelling	%		3.95			

PROJECT:	PUNJAB INTERN	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM								
LOCATION:	CATION: TREATMENT PLANTS IN SIALKOT CITY CLIENT									
TP/ BH NO:	TP-4	SAMPLE NO:	BS-1	DEPTH (m)	0.00-1.50					
LAB REF. NO:	11/2020	DATE:) 28.02	2.2020							
TESTED AZMA		M		KED BY: HMOOD	Mis					

COMPACTION TEST

SOILCON GEOTECHNICAL TESTING LABORATORIES

18-Km Multan Road Lahore, Ph.No: 042-7510942-3 Fax No: 7510944

Test Method: Modified AASHTO T-180 (Method A)

Dia of Mould: 4.0 inch

No of Blows: 25 Test Pit No:

TP-5

No of Layers Sample No. BS-1 Volume of Mould: 938 cm³

Drop:

Wt of Hammer:

18 inch 10 lbs

Depth (m):

Optimum Moi	sture Content (%)	14.55	Maximum Dry Density		1.824 g/cm ³	
Project: PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM						
Location:	TREATMENT PLAN	ANTS IN SIALKOT CITY Client: AJK ENGINEERS				
Tested By Azmat	Check Mahr		(web)	Dated 22.02.2020	LAB. REF 11/2020	

REMARKS:					
				 -	

COMPACTION TEST

SOILCON GEOTECHNICAL TESTING LABORATORIES

18-Km Multan Road Lahore, Ph.No: 042-7510942-3 Fax No: 7510944

Test Method: Modified AASHTO T-180 (Method A)

Dia of Mould: 4.0 inch

No of Blows: 25

Test Pit No:

No of Layers TP-7 BS-1 Sample No.

Volume of Mould: 938 cm³

Drop:

18 inch

Wt of Hammer:

lbs 10

Depth (m):

Optimum Moisture Content (%)		t(%) 11.71	Maximu	m Dry Density	1.952 g/cm ³	
Project: PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM						
Location:	TREATM	ENT PLANTS IN SIA	Client: AJK ENG	NEERS		
Tested By /		Checked By	080	Dated	LAB. REF	
Azmat /,	My	· · Mahmood] (N/	22.02.2020	11/2020	

REMARKS:		

GEOTECHNICAL TESTING LABORATORIES, 18-Km, MULTAN ROAD, LAHORE

C.B.R. TEST

(AASHTO T-193)

No.of Blows per Layer	65	30	10		
CBR Value at 0.1 in %				COMPACTION	MODIFIED
CBR Value at 0.2 in %	1.1	0.4	0.2	M.D.D. g/cu.cm	1.952
Dry Density g/ cm ³	1.951	1.816	1.717	O.M.C %	11.71
Moisture Content %	11.57	11.57	11.57		
Absorption %	5.62	7.15	9.02		
Swelling %		5.58			

PROJECT:	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM							
LOCATION:	TREATMENT F	PLANTS IN SIALKOT CI	CLIENT	AJK ENGINEERS				
TP/ BH NO:	TP-7	SAMPLE NO:	BS-1	DEPTH (m)	0.00-1.20			
LAB REF. NO:	11/2020	DATE 28.02	2.2020					
TESTED BY : AZMAT		Mb.		KED BY:	LAMB'			

COMPACTION TEST

SOILCON GEOTECHNICAL TESTING LABORATORIES

18-Km Multan Road Lahore, Ph.No: 042-7510942-3 Fax No: 7510944

Test Method: Modified AASHTO T-180 (Method A)

Dia of Mould: 4.0 inch

No of Blows: 25

Test Pit No: TP-9

No of Layers Sample No.

BS-1

Volume of Mould: 938 cm³

Wt of Hammer:

Drop:

18 inch 10 lbs

Depth (m):

Optimum Moisture Content (%)			13.63	Maximum Dry Density		1.909 g/cm ³		
Project: PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM								
Location:	TREATMENT PLANTS IN SIALKOT CITY Client: AJK ENGINEERS							
Tested By	Y A - M//	Checked	l By	(b)	Dated	LAB. REF		
Azmat	KI /1/6	⊿ Mahmo	ood	(m) 10	22.02.2020	11/2020		

REMARKS:		

COMPACTION TEST

SOILCON GEOTECHNICAL TESTING LABORATORIES

18-Km Multan Road Lahore, Ph.No: 042-7510942-3 Fax No: 7510944

Test Method: Modified AASHTO T-180 (Method A)

Dia of Mould: 4.0 inch

25 No of Blows: No of Layers

Test Pit No:

TP-10 Sample No. BS-1

Wt of Hammer:

Volume of Mould: 938 cm³

Drop:

18 inch 10 lbs

Depth (m):

Optimum Mois	nt (%)	12.20	Maximum Dry Density		1.962 g/cm ³		
Project: PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM							
Location:	PREATMENT PLANTS IN SIALKOT CITY Client: AJK ENGINEERS						
Tested By/	W 10. 7	Checked	l By	\bigcirc 10	Dated	LAB. REF	
Azmat	Azmat Mahmood 22.02.2020 11/2020						
	1000						

REMARKS:	

GEOTECHNICAL TESTING LABORATORIES, 18-Km, MULTAN ROAD, LAHORE

C.B.R. TEST

No.of Blows per Layer	65	30	10		
CBR Value at 0.1 in %				COMPACTION	MODIFIED
CBR Value at 0.2 in %	1.2	0.4	0.2	M.D.D. g/cu.cm	1.962
Dry Density g/ cm ³	1.962	1.864	1.765	O.M.C %	12.20
Moisture Content %	11.89	11.89	11.89		
Absorption %	3.40	5.16	7.18		
Swelling %		3.91			

PROJECT:	PUNJAB INTER	PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM							
LOCATION:	TREATMENT P	LANTS IN SIALKOT CI	CLIENT	AJK ENGINEERS					
TP/ BH NO:	TP-10	SAMPLE NO:	BS-1	DEPTH (m)	0.00-1.50				
LAB REF. NO:	11/2020	DATE: 28.02	2.2020	1					
TESTEI AZM		Mari		CKED BY: HMOOD	+ 11/15.				
				1					

COMPACTION TEST

SOILCON GEOTECHNICAL TESTING LABORATORIES

18-Km Multan Road Lahore, Ph.No: 042-7510942-3 Fax No: 7510944

Test Method: Modified AASHTO T-180 (Method A)

Dia of Mould: 4.0 inch

No of Blows: 25

Test Pit No: BA-1 Sample No.

No of Layers

Volume of Mould: 938 cm³

Drop:

18 inch

Wt of Hammer: Depth (m):

lbs 10 0.20-1.20

Optimum Mois	ture Conte	nt (%)	13.48	Maxim	um Dry Density	1.916 g/cm ³
Project:	PUNJAB	INTER	RMEDIATE CI	TIES INVEST	MENT PROGRAM	-
Location:	TREATA	AENT P	PLANTS IN SI	ALKOT CITY	Client: AJK ENGI	NEERS
Tested By /		C	Checked By	000	Dated	LAB. REF
Azmat	XIAL	- 1	Mahmood		22.02.2020	11/2020
REMARKS:						

COMPACTION TEST

SOILCON GEOTECHNICAL TESTING LABORATORIES

18-Km Multan Road Lahore, Ph.No: 042-7510942-3 Fax No: 7510944

Test Method: Modified AASHTO T-180 (Method A)

Dia of Mould: 4.0 inch

No of Blows: 25 No of Layers

Test Pit No:

BA-2 Sample No. BS Volume of Mould: 938 cm³

Drop:

18 inch Wt of Hammer: 10 lbs

Depth (m):

0.10-1.20

Optimum Mois	ture Conten	t(%)	12.08	Maximu	m Dry Density	1.974 g/cm ³
Project:	PUNJAB 1	INTERMEDI	ATE CIT	IES INVESTM	ENT PROGRAM	
Location:	TREATM	ENT PLANT	S IN SIAL	KOT CITY	Client: AJK ENGI	NEERS
Tested By	1 W/ L	Checked	Ву	000	Dated	LAB. REF
Azmat \	116	Mahmo	od		22.02.2020	11/2020

REMARKS:		

COMPACTION TEST

SOILCON GEOTECHNICAL TESTING LABORATORIES

18-Km Multan Road Lahore, Ph.No: 042-7510942-3 Fax No: 7510944

Test Method: Modified AASHTO T-180 (Method A)

Dia of Mould: 4.0 inch

No of Blows: 25 No of Layers

Test Pit No: BA-3 Sample No. BS Volume of Mould: 938 cm³

Drop:

18 inch 10 lbs

Wt of Hammer: Depth (m):

0.10-1.00

Optimum Mois	sture Conter	nt (%) 10.64	Maximu	m Dry Density	2.004 g/cm ³
Project:	PUNJAB	INTERMEDIATE CI	TIES INVESTM	IENT PROGRAM	
Location:	TREATM	IENT PLANTS IN SIA	LKOT CITY	Client: AJK ENGI	NEERS
Tested By		Checked By	000	Dated	LAB. REF
Azmat		Mahmood		22.02.2020	11/2020

REMARKS:	 		

CLI	ENT				C	ONSU	LTA	NT		Ī	C	ONTI	RACT	OR	
	-					NES	PAK				AJK E	ngine	ers (P	vt.) Lt	d.
Project	Con	nstruct	ion of	Wate	er Sup	ply &	Sew	erage	Syste	m				co:	
Location	Sial	lkot Ci	ity ———		<u>-</u> -			_		- r · · · -		Testi		d Conci	Pvt (Ltd)
BH / TP No.	BAS	5-01					Job	No.							
Sample No.	CS						Lab	No.		603					
Sample Depth (m)	0.00	-1.50					Test	Starte	1	14-Feb	-20				
Sampling Date	-	•					Test	Compl	eted	16-Feb	-20				
)IS	rur	E DI	INS	ITY	REL	ΑT	ION	SHI	P (A	ASH	TO	Т 18	0)	
Mould No.			1	Wei	ght of	Ramm	er	4.	54 kg	Dia of	Mould	· · · · · · · · · · · · · · · · · · ·	1		15.24 cm
		25	56	_	of Rar		-			n Height		ıld			11.643 cm
Number of Blows	\dashv			1 all	UI IXAI				01		e of Mo				2123.9 cm ³
Number of Layers			5						_	1 4 Olum	C 01 1710	uiu.			.125.7 0111
Unit Weight D	<u>ete</u>	rmina	tion												
Trial No.				-	1	2	-	3	$-\vdash$	4	5	<u>. </u>	6	_	7
Weight of Mould					220	222	-	2220		2220 6415	222 615			-	
Weight of Mould a			I (g)		930	628 408		6580 4360		4195	393			-	_
Weight of Wet Soi				_	.747	1.9		2.053	_	1.975	1.85				
Wet Density of So Dry Density of Soi				_	.600	1.72		1.813		1.714	1.58				_
						1.74	-4	1.010							
Moisture Con	tent	Dete	rmina				1			0.00		<u> </u>		- 1	7
Container No.					2-30	C-7	-	C-71	_	C-36	C-8		6		
Wt. of Container (_	2.47	24.2		22.3		23.64	25. ²	-			
Wt. of Container				_	98.52 93.76	188. 171.		177.5 159.4		185.28 163.94	169.			_	
Wt. of Container	+ Dry	Samp	ie (g)		33.76 4.76	16.4		18.1		21.34	24.8				
Wt. of Water (g) Wt. of Dry Soil (g)					51.29	147	_	137.0	_	140.30	144.				
Moistrure Conten		<u> </u>		_	9.15	11.		13.2	_	15.21	17.2				_
	.85]
<u> </u>	.80														
	==			====					7						1
9 1	.75		 -						-77						
Dry Density (g/cc)	==					<i>E</i>			3						
l nsit	1.70														
a	=				1										
6 1	1.65										<u></u>				
	E			1							77				
1	1.60														
	E														
	1.55 7	8	9	10	11	12 Moistur		13 1 Itent (%)		15 16	. 17	18	19		
Maximum Dry De	ensity	,			1.813	g/cm	³ Op	timum	Moist	ure Con	tent			13	.10 %
	ted I			T		Che	ked	Ву				App	roved	By	
i	yad A	-					Ramz				M	Iuham	mad D	aniyal	

																																						15		51	
	TO L		Soil and Concrete	Testing Laboratory (Pvt)	Ltd		45.72 ст		65 Blows	15	3920	4807	2317	2.075	1.833	1.813 g/cm ³																1						0.50		-	******
vt.) Ltd.	TAPP -	ゴブ	Soil and	Testing Lab	1		Rammer Fall		30 Blows	- 6	3880	4567	2317	1.972	1.742	ensity				\ 	Ż							T V										0.30 0.40	ion (in)	Jac Champa	мипатта Бапуа
GONIKACIOR AJK Engineers (Pvt.) Ltd							뫄	Unit Weight of Soil	10 Blows	28	3935	4228	2317	1,824	1.612	Max Dry Density																		1				2	Penetration (in)		P.E.
AJKE						193)	lght 4.536	Unit	Description		Plate	(6)	d (cm ³)	oll (a/cm³)	oll (g/cm³)	13.10 %		2300	2200	2100	2000	180		169	1500	1400	(al)	bec 5	1000	006	8 1	8 88	2005	400	300	N N N N N N N N N N N N N N N N N N N	100	0.00 0.10			d By
						AASHTO T1	5 Rammer Weight		Desc	Mould No.	Wt.Mould + Base Plate	WE MOUID SOIL (9)	Volume of Mould (cm ³)	Wet Density of Soil (a/cm ³)	Dry Density of Soil (g/cm ³	O.M.C				/	/							the second second					1,800 1,900			O In penetration		u	Isry = 14.0		Approved By
<u></u>		603		16-Feb-20	21-Feb-20	TEST (AA	No. of Layers		91	8 S9	57.5	23.33	4 162.3 190.0	19.43	139.3	13.95								/							a de martin de la companya de la com		1.757 1.75 1.	Dry Density (g/cc)		delterfanag ni 02 0 ta aniev 885	SOLV Valde at 0.	90 % Max Dry Density	95 % Max Dry Density		M.Ramzan
CONSULTANT NES PAK			Sampled Date		Test Completed		10, 30, 65 No		After Soaking	H	_{ရှိ}	25.03	185.2 187.5 191.4	20.28	142.3	14.25												Accession to the second		•			1.600	Dry Dr		Day Denethy at	Deliaity at	= 1.632 g/cc	= 1.722 g/cc = 1.843 g/cc	206 212.1	
	Job No.	Lab No.	Sami	Test	Test					10 Bi	န္ထ	21.35	188.8 181.5 1	21.20	138.9	15.28	1	28.0	27.0	92	220	720	20.0	19.0	uls\.	/ ЯВ (현 :	0 130	11.0	10.0	8.0	8.0	0.4	3.0			IMay Du	K I		95%	NO01	_
	System					CALIFORNIA BEARI	cm No. of Blows	tent of Soil	oaking	ws 65 Blows	C-129	24.91	159,5	45.0	118.9	13.18		0.89	65 Blows	_	4	+	+	+	521	+	╁	_	Н	\dashv	+	1/38	+	+	┨	11	al %	\dashv	9 9	ı⊩	Checked By
	y & Sewerage					CALIF	12.70	Moisture Content of Soil	Before Soaking	1 1	\rightarrow		188.5	102.1	148.3	13.28		Ring Factor		_	Res	4	4	\dashv	316 586	404 (47	-	_	701 1298	+	+	1053 1953	+	╬	┨	Swell	Initali Final		0.0	Ö	
⊢	Construction of Water Supply & Sewerage System						rt of Mould			10 Blows	မ ေ	20.48 24.97	168.7 181.3	151.4 163.0	13.00	13 15 13 22	2:31	-	30 Blows	Dial	<u>B</u>	0	+	+	+	454	+	┝		921	+	1184	+	╀	┨	Dry Density	ᆜ	1.612	1.742	1.833	Faryad All
CLIENT	Construction	Sialkot City	BAS-01	CS	0.00-1.50		cm Height of Mould	i		_				(6)				T DATA	10 Blows	Ľ		0	23	Ξ	£ (/61	271	310	343	398	463	512	373	010		Oro			_	╣	
							15.24			Description		ner (g)	ner + Soll (g	ner + Dry So	6)	ntent (%)	11401116 (70)	CBR TEST DATA	_		Reading	0	9	124	174	222	302	349	382	447	520	929	40 8	2 80	200	CBR at	0.1 ln 0.2 ln	_	13.46 15.58	22.17 25.0	
	Project	Location	BH / TP No.	Sample No.	Sample Depth (m)		Dia of Mould				Container No.	Wt. of Container (g)	Wt. of Container + Soll (g)	Wt. of Container + Dry Soil	Wt. of Water (g)	W. of Dry Soll (9)	DO DE DESCRIPTION		;	Penetration	(m)	0.000	0.025	0.050	0.075	0.100	0.150	0.175	0.200	0.250	0.300	0.350	0.400	0.450	000.0	CBR			-+	-1	Tested By

CLI	ENT	<u> </u>		C	ONSU							CTOF		
					NES	PAI				AJK Eng	ineers	(PVt.) Lta.	
Project	Con	structi	on of	Water Sup	ply &	Sew	erage Sys	sten	n ———			lec		1
Location	Sial	kot Ci	ty							Т		il and C Laborat	roy Pvt	(Ltd)
BH / TP No.	BAS	-02				Job	No.	_	-		_			
Sample No.	CS					Lab	No.		603					
Sample Depth (m)	0.00-	1.50				Tes	t Started		14-Feb-	-20				
Sampling Date	ļ.					Tes	t Complete	d	16-Feb-	20				
	IST	URI	E DE	NSITY	REL	ΑŢ	IONSE	Ш	P (A	ASHT	ОΤ	180))	
Mould No.				Weight of	Ramme	r	4.54	kg	Dia of I	Mould			15.2	.4 cm
Number of Blows		- 25	56	Fall of Ra			45.72	cm	Height	of Mould			11.6	43 cm
			5	T tall Of Atta					-	e of Mould	ł		2123	3.9 cm ³
Number of Layers								_	T OIGH	o or intour				
Unit Weight D	eter	mina	tion			_		_			Т.		_	7
Trial No.				1 2000	2	_	3	├-,	4 2060	5 2060	+	6	-	
Weight of Mould				2060	206		2060 6345	<u> </u>	2060 3265	6015	+		1	
Weight of Mould a		et Soil	(g)	5711	603 397		4285	-	4205 4205	3955	+-	.		
Weight of Wet Soi		3\		3651 1.719	1.87		2.018		1.980	1.862	1		+	
Wet Density of Soi	_			1.565	1.68		1.776	_	1.716	1.585				
			•		1.00	<u>, </u>	1.170				1		<u>'</u>	
Moisture Con	tent	Detei	rmina		T	_	0.00	Т,	2 424	C 77	1	6	\neg	7
Container No.				C-24	C-6		C-68	-	22.66	C-77 22.57			+-	' -
Wt. of Container			I- (-)	21.41	22.1 194.		24.06 188.74	_	92.28	178.52	_		-	
Wt. of Container				187.59 172.69	176.		169.04	-	69.71	155.27	-		_	
Wt. of Container	+ ргу	Sampi	e (g)	14.90	17.6		19.70	_	22.57	23.25	1			
Wt. of Water (g) Wt. of Dry Soil (g)				151.28	154.		144.98	-1	47.05	132.70				
Moistrure Conten				9.85	11.4		13.59	1	15.35	17.52				
	.85						<u> </u>			T- T-				
1 '						===						===		
1	.80													
	===				=====	17								
ତୃ ୀ	.75		======			4		<u> </u>						
Dry Density (g/cc)	1.70				\mathscr{U}							===		
l sit	==													
a 1	1.65					=								
E	1.60									X		==		
	···· E							====						
	1.55									I				
	==											===		
	1.50 7	8	9	10 11	12 Moistur	13 0 CO	14 19 ntent (%)	5	16	17 18	19	20		
					WOISLUI	e 00	interit (70)							
Maximum Dry De	ensity			1.77			otimum Mo	oistu	re Con				13.60	%
Tes	ted E	Ву			Chec	ked	Ву		1			ved By		
Nasru	llha K	han		<u> </u>	M.R	lam	zan			Mul	namma	ad Dani	iyal	

		CLIENT	۲					CONSULTANT NES PAK	LTANT			ļ	AJK E	CONTRACTOR AJK Engineers (Pvt.) Ltd	OR vt.) Ltd.	
Project		Construction of Water Supply & Sewerage	n of Water S	Supply & St		System	-	Job No.	-						7	200
Location		Sialkot City						Lab No.	603						これに	
BH / TP No.		BAS-02					, 	Sampled Date							Soil and	Soil and Concrete
Sample No.		SO						Test Started	1	16-Feb-20	ļ	ļ			Testing La	Testing Laboratory (Pvt)
Sample Depth (m)		0.00-1.50						Test Completed		21-Feb-20	ļ					Lta
					CALIFO	RNIAE	SEARII	FORNIA BEARING RATIO	O TEST	_	AASHTO T1	193)		,		
Dia of Mould	15.24	1	cm Height of Mould	2	12.70 CI	cm No. of Blows	3lows	10, 30, 65	No. c	No. of Layers	5 Rammer Weight	sight.	4,536	κg	Rammer Fall	45,72 cm
		1		ı	₩	t of Soil							Unit W	Unit Weight of Soll		
			-		Before Soaking	gu	-	After	After Soaking		Desc	Description		10 Blows	30 Blows	65 Blows
	Description	Ĕ	<u> </u>	10 Blows	30 Blows	65 BI	Н	Slows	SAAO	65 Blows	Mould No.			98	5	14
Container No.			ડ		ညေသ	55-5	-	ပ်	532		Wt.Mould + Base Plate	e Plate		3872	3400	3972
Wt. of Container (g)	r (g)		25.0		28.65	24.29	24.71 22.59	32.08	24.71	23,23 21,62	Weight of Wet Soil (g)	(B)		4160	4498	4727
Wt. of Container + Soil (g)	r + Soll (g		172	199.7	191.5 158.6	167.6	188.7 194.2		165.0			Id (cm ³)		2317	2317	2317
Wt. of Container + Dry Soll (g)	r + Dry Sc	(8)	152.0	1/3/64	19.43	17.09		21.05	20.40		=	Soll (g/cm	(-)	1.796	1.941	2.041
W. of water (g)	_		197	150 9	143.4	128.2		135.6	140.5	150.4 149.4	_	ioli (g/cn	Į.	1.580	1.709	1.798
Wt. of Dry Soli (g)	(9) ant (%)		13.58	13.68	13.55	13.54		15.52	14.52	13.68		13	13.60 %	Max Dry Density	ensity	1.778 g/cm ³
	CBR TEST DATA	T DATA		- R	Ring Factor	0.89	25.0					2200 1				
	5	10 Blows	30.	30 Blows		65 Blows	24.0			aran o same		2100				
Penetration	Dia	Load	Dial	Load	FIE	Load	230	1				2000 -				
E ·	Reading	(lb)	Reading	(g)	Reading	<u>a</u>	24.0			/		1900				
0.000	0	_	0	0	0	٥	200			/		1800				
0.025	41	37	114	ᅙ	8	161	180			/		92.	 			
0.050	98	9/	238	211	377	335				/						
0.075	120	106	332	292	929	468	alue 8			/		280				
0.100	153	136	423	377	671	597				1						
0.125	184	164	510	2 54	808	719			family and	Some and a		96 (
0.150	210	187	285	518	922	820	120					(a) E				
0.175	240	214	999	292	1055	939	10.0			كأعدد ومسوعه		*o1	#			
0.200	207	230	3 3	B	200	770	9.0					006				
0.250	300	318	8 8	\$ 8	1573	1400	0.2					800				
0.350	395	351	195	982	1752	1560	6.0					8				
0.400	443	395	1230	1095	-	1735	0.6					009	*			
0.450	471	419	1314	1169	2086	1856	1,500	00 1.600		1.700	1.800 1.900	999	1			Ţ
0.500	509	453	1411	1255	Н	1990			Dry Defibility (Bree)	try (greet		£ 5			Į	
									L			20 20				
	CC L	=	Dry Density		SWell	ļ	Max	Max Dry Density at		BR Value at 0.	CBR Value at 0.20 in penetration	9	H H			
-4	+	_	(g/cm³)	nital	Final	<u>"</u>		000,	T,	20.00	,	-	Ž		\mathbb{H}	H
-	-		1.580	0	0:	9.0	806	- 1	Ť	90 % Max Dry Density		,	0.00 0.10	2	0.30 0.40	0.50 0.60
_	$\boldsymbol{+}$		1.709	0	0.0	8 6	35% 1004	= 1.689 g/cc	Ť	100 % Max Dry Density	1 11			Penetration (in)	(ui) uoi	
65 Blows 19	19.90 23.04		1./38		11	90.0	╣	╙	╢	tion water or or	r	<u> </u>				
Tested By			Nasrualiha Khan	a Khan		Checked By		·	Ξ̈	M.Ramzan	Approved By	ed By		26	Munammad Daniya	
																m

CLI	ENT	Γ				СО	NSUL'	TAN	Γ			C	ONT	RAC	ГOR	
	-						NES P	AK	_			AJK E	ngine	ers (I	Pvt.) I	∠td.
Project	Coı	nstruc	tion	of V	Vater S	Supp	ly & Se	ewera	ige Sy	ster	n				eco	
Location	Sia	lkot C	City								·		Testi		nd Con boratro	y Pvt (Ltd)
BH / TP No.	BAS	S-03					J	ob No								
Sample No.	CS						L	ab No) <u>.</u>		603					
Sample Depth (m)	0.00)-1.50					Т	est St	arted		14-Feb-	20				
Sampling Date							T	est Co	mplete	ed	16-Feb-	20				
)IS	TUR	E I	DEI	NSIT	ΥF	RELA	TIC	NSI	H	P (A.	ASH'	TO	T 18	30)	
Mould No.			1		Weight	of R	ammer		4.54	kg	Dia of I	Mould				15.24 cm
Number of Blows		25		\neg	Fall of						Height		ld	Ì		11.643 cm
				~	ran or				10112	V	Volume					2123.9 cm
Number of Layers			5								i . oranic	. 02 1720				2-20.5 0111
Unit Weight I	ete)	rmin:	<u>atio</u>	n (—т			7
Trial No.		_	_		1	+	2		3	\vdash	4 2220	222	, 		3	7
Weight of Mould		** • 6		-	2220		2220		2220	1-			<u> </u> -			
Weight of Mould			il (g)	5878	-	6148		5477 <u> </u>	+	6375 4155	614 392				
Weight of Wet So					3658 1.72		3928 1.849		<u>+257</u> 2.004		1.956	1.84				
Wet Density of So				-	1.56	_	1.662		.764	+	1.695	1.57				
Dry Density of So						<u> </u>	1.002		1.70-1	I	1.000	1.07				
Moisture Con	tent	Dete	erm	inat						т.						7
Container No.					C-22	_	C-28		C-72	_	C-117	C-5	_		5	7
Wt. of Container					25.5		29.93		28.61 88.59	+-	25.77 91.41	29.2 187.				· <u>·</u>
Wt. of Container					193.5 178.3		194.48 177.79		69.38		69.29	164.		_		
Wt. of Container	+ Dr	y Samj	bie (F	<u>;) </u>	15.2		16.69		19.21	+	22.12	23.	_			
Wt. of Water (g) Wt. of Dry Soil (g	`	·			152.7		147.86		40.77	_	43.52	135.				
Moistrure Conten		<u>, , </u>			9.95	_	11.29		13.65		15.41	17.				
	1.80														1	
	··· =						+									
i .	1.75						Ŧ									
	==						1//		1							
्र	1.70									1					1	
Dry Density (g/cc)	E										~	 				
sity	1.65					1									1	
Der	Ē				/							 				
ον	1.60														1	
·	<u> </u>				¥			 								
	1.55															
	F					<u> </u>		<u> </u>				!			1	
	1.50 F	8	1	9	10 1	I I I	12 1 loisture (5	16	1 	3 1	9 2	4 20	
Maximum Dry De	ancit	·			1	763	g/cm ³	Optim	um Ma	oistı	ire Cont	ent				3.60 %
							Check				1		Ann	rovec		
	ted]	-					M.Rai	_				1 . A			Daniya	1
Far	yad A	All.					ıvı.Ka	ııızail	<u>.</u>	-		141	unan	unau 1	- uniya	<u> </u>

		CLIENT	ΙŻ					CONSULTANT NES PAK	NAT Y		A.K	CONTRACTOR AJK Engineers (Pvt.) Ltd	ror ovt.) Ltd.	
Profect		Construction of Water Supply & Sewerag	1 of Water S	S & Ajddn	werage System	- ma	3	Job No.	<u> </u>				7	3
Location		Sialkot City					La	Lab No.	603				ンシコ	
BH / TP No.		BAS-03					Sa	Sampled Date	-				Soil an	Soil and Concrete
Sample No.		SS					Te	Test Started	16-Feb-20				Testing La	Testing Laboratory (Pvt)
Sample Depth (m)		0.00-1.50					Te	Test Completed	21-Feb-20					Ltd
				ပ	CALIFO	FORNIA B	EARIN	BEARING RATIO 1	TEST (A	AASHTO T1	193)			
Dia of Mould	15.24	cm Helg	cm Height of Mould		12,70 cm	1 No. of Blows	lows	10, 30, 65	No. of Layers	5 Rammer Weight		4.536 kg Ram	Rammer Fall	45.72 cm
				Moisture Co	ire Content	ntent of Soll			:			Unit Weight of Soil		
				œ.	Before Soaking	βL		A		Desc	Description	10 Blows	30 Blows	65 Blows
-	Description	_	위	Н		65 B	Н	llows 30 B	65 BI	Mould No.	i	37	9	29
Container No.			2	C-119 C-81		န	_	C-07 C-78	4		Plate	3956	3884	3458
Wt. of Container (g)	(B)		29.6	29.66 23.00		21.93		22.61 23.86	25.66 31.58 24.37		(t	00/9	0343	7410
Wt. of Container + Soil (g)	r + Soll (g)		46.	5 166.5	178.5 188.3	191.5	188.6 178.9	168.3 191.5		Weignt of Wei Soll (g)	1 (G)	2317	2347	7317
Wt. of Water (a)	r + Dry So	(8)	148.3	17 13		20 20		22.16 20.78	17.88		oli (q/cm³)	1.780	1.925	2.022
We of Dry Soll (a)) E		118.6	126.4		149.4	145,9 133.9	143.5 146.8	128.8	_	oll (g/cm³)	1.567	1.695	1.783
Moistrure Content (%)	ant (%)		13.65	13.55		13.52	13.29 15.87	15.44 14.15	13.88		13.60 %	Max Dry Density	Jensity	1.763 g/cm³
	CBR TEST DATA	T DATA		Ring	Ring Factor	0.89	28.0				2200			
,	Ē	10 Blows	30 B	30 Blows	65 Blows	SMO	25.0		,		2100			- ¢
Penetration (in)	Dial	_	Dial	Load	Dial	Load	23.0		/		2000			
	Reading	1	Reading	9	Reading	9	220				98			
0.000	ام	0	۽ ا	٩	0 5	٩	200		/		oge (
0.025	22	44	124	110	189	89	19.0				00/1		X	
0.050	\$	92	258	239	395	352								
0.075	145	129	360	320	22.1	494	5 pn 20 0 pr		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		005			
0.100	185	2	429	409	794	929					1400			
0.125	223	198	223	493	848	25/25	85 5 5 5 5				1300			
0.150	254	226	634	295	/96	199	120	Jane	and the second second second second	Section of the sectio	= 1200	+/-+		
0.175	291	259	723	5 5	110/	382	11.0	7			500			
0.200	170	234	250	2 2	1434	1274	9.0		The state of the s	A	006		7	
0.230	433	386	1077	929	1650	1468	02				008			
0.350	479	426	1199	1067	1838	1636	6.0				700	1		
0.400	537	478	1335	1188	2045	1820	5.0				009			
0.450	571	508	1427	1270	2188	1947	1.500	1.600		1.800 1.900	DOS DOS			
0.500	616	548	1532	1363	2345	2087		VIO.	Dry Delibity (Bree)		300			
000	9		Dov Donethy		Swell						200			
	0.1 ln 0.2 ln	—	(g/cm³)	Initali	Final	%	Max	Max Dry Density at	CBR Value at 0	CBR Value at 0.20 in penetration	100			
-			1.567	0	0'0	0.00	%06	= 1.587 g/cc	90 % Max Dry Density	n	0.00	0.10 0.20	0.30 0.40	0.50 0.60
30 Blows 13	13.63 15.78		1.695	0 0	0.0	0.00	95%	= 1.675 g/cc = 1.763 g/cc	95 % Max Dry Density 100 % Max Dry Density	ensity = 14.0 Density = 22.1		Penetra	Penetration (in)	
-1	-	1		ш	╙					Г	á		Muhammad Danival	155
Tested By			Jawad Nasir	asır	5	спескеа Бу			m.Kamzan	Approved by	a by		Illallillau Dall	
														1

onstr

CLI	ENT					CO	NSU	LTA	NT			(CONT	RAC	TOR		
	-						NES	PAŁ	ζ.			AJK I	Engine	ers (Pvt.)	Ltd.	
Project	Cor	nstruct	tion	of V	Water S	upp	ly &	Sew	erage S	yster	n			d	ec	on	
Location	Sial	lkot C	ity										Testi		and Co iboratr	ncrete oy Pvt (Lte	d)
BH / TP No.	BAS	S-04						Job	No.		-						
Sample No.	CS							Lab	No.		603						
Sample Depth (m)	0.00	-1.50						Test	Started		14-Feb	-20					
Sampling Date	-							Test	Complet	ted	16-Feb	-20				•	
MC	IST	ΓUR	E]	DE	NSIT	Y F	REL	ΑT	IONS	ΗП	P (A	ASH	TO	T 1	80)		
Mould No.			1		Weight	of R	amme	r	4.5	4 kg	Dia of	Mould				15.24	cm
Number of Blows		25		56	Fall of I	_		•			Height		uld			11.643	cm
Number of Layers			5	-					1		Volum					2123.9	
						****											٦
Unit Weight D Trial No.	etel	KILLLLL	u	Щ	1	Т	2	Т	3	$\overline{}$	4	5	1		6	7	닉
Weight of Mould	(g)				2060	\dashv	2060	, †	2060	+	2060	206	-		-	†	\dashv
Weight of Mould a	100	Vet Soi	l (e	()	5665	-	6035		6355	+	3275	592				1	\dashv
Weight of Wet Soi				,	3605	_	3975	_	4295		4215	386					
Wet Density of Soi		cm³)			1.697	1	1.87	2	2.022	1	.985	1.82	21				
Dry Density of Soi	l (g/c	em³)			1.562	2	1.69	3	1.795	1	1.733	1.5	65				
Moisture Con	tent	Dete	rm	inat	ion												ı
Container No.					C-15		C-09	•	C-26		C-51	C-6	32		6	7	
Wt. of Container (g)				30.41		23.8	2	23.25	2	24.09	30.	36				
Wt. of Container	- Wei	t Samp	le (g)	169.8	5	178.8	34	188.59	1	67.94	185	.28				
Wt. of Container	⊦ Dry	Sampl	le (g	<u>;) </u>	158.7		164.0	_	169.98		49.73	163.				-	
Wt. of Water (g)		_			11.14	_	14.7		18.61	+	18.21	21.				ļ	\dashv
Wt. of Dry Soil (g)					128.3		140.2	$\overline{}$	146.73	_	25.64	133.				1	\dashv
Moistrure Conten					8.68		10.5	4	12.68		14.49	16.	38			<u> </u>	ᅴ
1.	.85 E==				1		+===	1==]		
	.80						#===	#==									1
	===						#===	17			:::::::::::::::::::::::::::::::::::::::	=====					-
ල 1	.75						11			1					1		
Dry Density (g/cc)	.70 E					3	/								1	ĺ	
sity	"E		===			1		1==			X						
L Den	.65				X			1							1		ı
, ro	E=		===				I								1		
	.60														1		
	.55		===		4							-			1		
	Ē				1										1		
1	.50 ===				9 10		+	12	13 1	4	15	16 17	7 18		19		
	٠.	,	•			Mo	oisture	Con	tent (%)				, ,				
Maximum Dry De	nsity				1.7	95 c	ı/cm³	Opt	timum Mo	oistur	re Cont	ent				12.90 %	
	ed B	v					Check		-				Appı	rovec	l By		╕
Nasrua		•					M.Ra		-			. M	luhamr		•	al	

	1			£			اء			T							1		,_,_							,	,	.,				,				T 83		L
	9		Concrete	Testing Laboratory (Pvt)	þ		45.72 cm		65 Blows	40	3366	4730	2317	2.042	1.815	1.795 g/cm														-8	+					0.50		N.
1		ン シ コ	Soil and Concrete	sting Labo	Ltd		ali		30 Blows	=	3862	4508	2317	1.946	1.725								 			X				+	1		#			0.40		History Danies
TOR		_ 		Tes			Rammer Fall		30 E		3 6	9 4	8	=	1.	Max Dry Density		1		+					#		7	A			 -	V				0.30	Penetration (in)	1
CONTRACTOR							kg Ra	ght of So	10 Blows	8	3864	4166	2317	1.798	1.596	Max Dry		+				H	#						1		+		X		Ħ	0.20	Penet	•
CONTRACTOR							4.536 k	Unit Weight of Soil	1							H		$\frac{1}{1}$			$\ $			H					V	V	*					윰		-
^					:				u				 (-)	(cm ₃)	/cm³)	12.90 %	000		1700		<u>ğ</u>	<u>§</u> ∏	1 1 1 1 1 1 1 1	120	<u> </u>			H g			<u> </u>				ē M	8		
						193	Weight		Description		ase Plat	11 (9) Soll (a	end (cn	f Soll (g	f Soll (g			2						<u> </u>	-	al) I	nrod g							_			<u></u>	
						70 T	Rammer Weight		Δ	Mould No.	Wt.Mould + Base Plate	Walaht of Wet Soll (a)	Volume of Mould (cm ³)	Wet Density of Soil (g/cm3)	Dry Density of Soil (g/cm³)	O.M.C						-								i i i	Ĭ	US.L		;	CBR Value at 0.20 in penetration	= 6.8	11.0	-11-
						AASHTO	2							-		\equiv			•/	/י	/									100	,	MB.L			ı.zu in pi	ensity	Pensity	1
				-20	-20	Y)	ayers			65 Blows	23 5-113	185 6 164 3	146.7	47 17.58	1.7 126.1	14.58 13.55 13.94					<i></i>		/	/				المحمددد				(00)			/alue at (90 % Max Dry Density	95 % Max Dry Density 100 % Max Dry Density	1
Į,	Ŀ	603	_	16-Feb-20	21-Feb-20	EST	No. of Layers			4						13.				i i	L L											7.700 Dry Density (g/cc)			Z BR	N % 06	95 % N	200
CONSULTANT			ate		eted	FORNIA BEARING RATIO TEST			After Soaking	30 Blows	9 5	23.39 24.4Z	138.8	16.75 17.84	115.4 12	14.51 14				-		-										Jew Dry	•		y at	1,616 g/cc	1.705 g/cc	3
NO 2	Job No.	Lab No.	Sampled Date	Test Started	Test Completed	G RA	10, 30, 65		•	\rightarrow	5 3	23.10 178.9	156.2	22.61	133.1	16.98															Ì			;	Max Dry Density at	= 1.61(1.70	ᄩ
	<u>3</u>	Ea	S	Ţe	Te	ARIN	g			-	_	20.03 197.6		24.77	152.8	12.58 16.21	200	7.0	20.0	19.0	17.0	18.0 -	150		120	10.0	8.0	7.0	6.0	4.0	95 1	006.1		'	Max D	%06	95%	3
						A BE	No. of Blows				5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	5 23.32 5 158 6	8 143.5	9 15.12	6 120.2	12.58		 T	Į.				T	T	RBS	٦,		ا موا	4	, ارب		م ا	_ _	L	Ī		<u> </u>	┨
_	e System)RNI	cm No.	nt of Soll		Н		27.70 28.25				12.81 12.39	0.89	65 Rlowe	Load	(g)	0	143	298	530	639	729	921	1078	1244	1385	134	1649	1/68		%	0.00	8.0	20.5
	verage Sy					CALIFO	12.70	Moisture Content of Soil	Before Soaking							—	actor	2	E E	Reading	0	6	335	40/ 596	718	819	1035	1211	1397	1556	1/35	1852	1986	Swell	Final	0.0	0.0	∦
	oly & Sev					ડ		Moistu	Be	H		23.46 23.29 23.25 178 8 177 5 187 4	160.1		136.8	12.75 12.78	Ring Facto		Load	(g)	0	82	178	347	381	435	550	642	743	825	920	983	1056		Initali	0	0 0	,
	Construction of Water Supply & Sewerag						Mould			10 Blows	နှ	23.46 178 8	161.4	17.49	137.9	12.68		30 Blowe	Dial	Reading	0	96	500	8/2	429	489	550 618	721	834	127	450	200	1186	Ľ	<u></u>			┨
CLIENT	Xion of M)ity			0		cm Height of Mould											ŀ	╀	_			+	+	$\frac{1}{1}$	\dashv	-			+	+	+	┨	Dry Density	(g/cm³)	1.596	1.725	2
ಠ	Construc	Sialkot City	BAS-04	SS	0.00-1.50		틍		,				(0)	(6)			FDATA	40 Blowe		(qj)		42	88	156	188	215	271	315	367	405	\$	483	521		_		21 12	
							15.24		Contractor	escubac		(B)	OS AUG +			ıt (%)	CRR TEST DATA	40,		Reading	٥	47	66	138	212	241	305	353	412	455	510	542	282	CBR at		6.03		ᅰ.
			ē	ė	Sample Depth (m)		plnc		ľ	ן נ	r No.	Wt. of Container (g)	Wt. of Container + Son (g)	ater (g)	Wt. of Dry Soll (g)	Moistrure Content (%)	ľ	 			П	33	اي	واح	, ž	_S	واع	ίζ	2	<u>g</u>	g :	<u>و</u>		F	9	Н	-	4
	Project	Location	BH / TP No.	Sample No.	Sample L		Dia of Mould				Container No.	7 of 50	At of C	Wt. of Water (g)	Wt. of Dr	Moistrur			Penetration		0.000	0.025	0.050	0.0/5	0.125	0.150	0.75	0.250	0.300	0,3	0.400	0.450	0.500	CBR	DATA	10 Blows	30 Blows	SMOID CO

બ

COMPACTION TEST

SOILCON GEOTECHNICAL TESTING LABORATORIES

18-Km Multan Road Lahore, Ph.No: 042-7510942-3 Fax No: 7510944

Test Method: Modified AASHTO T-180 (Method A)

Dia of Mould: 4.0 inch

No of Blows: 25 No of Layers 5

Test Pit No: BAS-5 Sample No. BS

Volume of Mould: 938 cm³

Drop:

18 inch lbs 10

Depth (m):

Wt of Hammer:

Optimum Mois	ture Con	tent (%)	11.49	Maximu	m Dry Density	1.917 g/cm ³						
Project: PUNJAB INTERMEDIATE CITIES INVESTMENT PROGRAM												
Location:	TREAT	MENT PL	ANTS IN SIA	LKOT CITY	Client: AJK ENGINEERS							
Tested By		Ch	ecked By	(12)	Dated	LAB. REF						
Azmat	KI NA	7. M	lahmood		22.02.2020	11/2020						
1												

REMARKS:					
	•				

COMPACTION TEST

SOILCON GEOTECHNICAL TESTING LABORATORIES

18-Km Multan Road Lahore, Ph.No: 042-7510942-3 Fax No: 7510944

Test Method: Modified AASHTO T-180 (Method A)

Dia of Mould: 4.0 inch

No of Blows: 25 No of Layers

Test Pit No: BAS-7 Sample No.

BS

Volume of Mould: 938 cm³

Drop:

Wt of Hammer:

18 inch 10 lbs

Depth (m):

Optimum Mois	ture Content	t(%) 1	5.10	Maximu	ım Dry Density	1.815 g/cm ³				
Project:	PUNJAB I	NTERMEDIATI	E CITI	ES INVEST	MENT PROGRAM	<u> </u>				
Location:	TREATM	ENT PLANTS IN	SIAL	KOT CITY	Client: AJK ENG	ENGINEERS				
Tested By		Checked By	,]	012	Dated	LAB. REF				
Azmat .	KI MASE	- ' Mahmood		(W)	22.02.2020	11/2020				

REMARKS:			

															-	 1/
			e te				Hď		1	ŧ						
TOR	Pvt.) Ltd.	decon	Concre	February 11, 2020	February 13, 2020		SQL	(mlm)		ı	•					
CONTRACTOR	AJK Engineers (Pvt.) Ltd.	de	Soil and Concrete Testing Laboratory	Februar	Februar		Oraganic Matter	(%)	0.29	0.31	0.32					
	AJK				pe		Chlorides	(%)	0.07	0.05	0.05					
		cot City.		Test Started	Test Completed	Soil	Sulphates	(%)	0.07	0.08	0.08					
CONSULTANT	NES PAK	Construction of Water Supply & Sewerage System in Sialkot City.				Chemical Analysis of Soil	Location									
		upply & Sew		603	•	Chen	Sample Depth (m)	To	2.45	4.45	1.45					
		of Water S					Sar	From	2.00	4.00	1.00					
CLIENT	t	Construction	Sialkot			i	Sample	Detail	SPT-02	SPT-04	SPT-01					
CI					d Date		BH/TP	No	BH-33	BH-35	BH-39			-		
		Project	Location	Lab No	Sampled Date		ż,	ů,	Т	2	3					

nstru

Construction of the Constr

			ī.				Hq		7.3	7.8	7.7	7.8					
TOR	Pvt.) Ltd.	decon	Concre-	February 11, 2020	February 13, 2020	,	SOLL	(mdd)	400	300	009	009					
CONTRACTOR	AJK Engineers (Pvt.) Ltd.	de	Soil and Concrete Testing Laboratory	Februar	Februar		Oraganic Matter	(%)	,		ı	•		٠			
	AJK		_		pa		Chlorides	(Ppm)	85	390	250	195					
				Test Started	Test Completed	√ater	Sulphates	(mdd)	123	165	247	247					
CONSULTANT	NES PAK	Construction of Water Supply & Sewerage System			10	Chemical Analysis of Water	Location										
:	į	npply & Sew		603	t	Chen	1 .	To	•								
	-	of Water Su					Sample Depth (m)	From	,	•		1					
CLIENT	•	Construction	Sialkot City				Sample	Detail	W/S	W/S	S/M	W/S					
CI					d Date		BH/TP	No No	BH-32	BH-35	BH-43	BH-48					
		Project	Location	Lab No	Sampled Date		JS ;	ĝ	1	2	3	4					

APPENDIX-D

REFERENCE FOR LINING MATERIAL

STATE OF MICHIGAN

Department of Environment, Great Lakes and Energy (EGLE) (www.michigan.gov)

Cross section of an idealized clay liner system.

WASTEWATER TREATMENT AND STORAGE LAGOONS (GUIDE SHEET IV)

GUIDESHEET IV

Wastewater Treatment and Storage Lagoons

Unless otherwise approved by the Department of Environmental Quality (DEQ) all wastewater treatment and storage lagoons associated with a discharge to the groundwaters of the State must meet the requirements specified in Rule 2237.

Dike Walls

For above-grade construction or if the lagoon liner base does not extend to the ground surface, perimeter dike walls are required to be constructed using a soil that is keyed to the natural soil base and meets the following criteria:

The relationship between hydraulic conductivity, moisture, and density is to be established with laboratory testing for the source of clay that will serve as the compacted clay portion of the composite liner. The relationship is to be determined using either the modified proctor test, ASTM D1557-91, or the standard proctor test, ASTM D698-91. And

Each lift is required to be thoroughly and uniformly compacted to achieve a hydraulic conductivity of not more than 1 x 10⁻⁷ centimeters per second based upon the density and moisture content determined as described above. The hydraulic conductivity of the soil is to be determined using ASTM method D5084-90 as modified by the department. If flexible wall permeameters are used, then confining pressures are required to be equivalent to the minimum pressure expected after the lagoon is placed in service. Soil is not be compacted at a moisture content that is less than optimum and is not to be compacted to less than either of the following densities:

Ninety percent of the maximum dry density, as determined by the modified proctor test, ASTM D1557-91, and

Ninety-five percent of the maximum dry density, as determined by the standard proctor test, ASTM D698-91.

Composite liners and Base

Each lagoon must have a composite liner with a base that meets the following requirements as specified in subrule (2) of Rule 2237:

The base of the composite liner is required to be a natural soil barrier, a compacted soil barrier or a geocomposite clay liner that meets the specific criteria for each of these technologies.

Natural Soil Barrier Requirements

A natural soil barrier used as a base in a composite liner system is required to meet all of the following requirements:

The natural soil shall be free of sand lenses and not less than 10 feet thick.

The soil shall have a saturated vertical hydraulic conductivity of not more than 1 x 10⁻⁷ centimeters per second.

Note: The hydraulic conductivity of the soil is required to be determined using ASTM method D5084-90, If flexible wall permeameters are used, then confining pressures are required to be equivalent to the minimum pressure expected after the lagoon is placed into service.

The natural soil liner surface is required to be properly prepared for placement of the flexible membrane liner (FML) to remove the potential for failures to the FML.

An engineer licensed under Act No. 299 of the Public Acts of 1980, as amended, otherwise known as the "Occupational Code," is required to certify to the department, that the requirements of the rule were met during installation of the natural soil base of the composite liner. The certification is to be accomplished through spatially random testing and measurements. At least 1 soil test is required to be conducted and an additional test is required for every 5,000 cubic yards placed and when the texture of the soil changes.

Compacted Soil Barrier

A compacted soil liner used as a segment of the composite liner system is required to meet all of the following:

The compacted soil liner shall have a minimum thickness of 2 feet.

The relationship between hydraulic conductivity, moisture, and density must be established with laboratory testing for the source of clay that will serve as the compacted clay portion of the composite liner. The relationship is to be determined using either the modified proctor test, ASTM D1557-91, or the standard proctor test, ASTM D698-91.

Each lift shall be thoroughly and uniformly compacted to achieve a hydraulic conductivity of not more than 1 x 10⁻⁷ centimeters per second based upon the density and moisture content determined as described above. The hydraulic conductivity of the soil is to be determined using ASTM method D5084-90, as modified by the department in R 299.4920. If flexible wall permeameters are used, then confining pressures are required to be equivalent to the minimum pressure expected after the lagoon is placed in

service. Soil shall not be compacted at a moisture content that is less than optimum and are not to be compacted to less than either of the following densities:

Ninety percent of the maximum dry density, as determined by the modified proctor test, ASTM D1557-91. And,

Ninety-five percent of the maximum dry density, as determined by the standard proctor test, ASTM D698-91.

The soil is to be placed so that each lift is not more than 6 inches after compaction.

The compacted soil liner surface is to be prepared for placement of the FML to remove the potential for failures of the FML.

The department may approve alternative test and investigative methods.

An engineer licensed under Act No. 299 of the Public Acts of 1980, as amended, otherwise known as the "Occupational Code," shall certify to the department, that the requirements of this rule were met during installation of the compacted soil base of the composite liner. The certification is to be accomplished through spatially random testing and measurements. At least 1 soil test of the compacted soil is required to be conducted and an additional test shall be conducted for every 5,000 cubic yards placed and when the texture of the soil changes.

Geocomposite Clay Liners

A geocomposite clay liner (GCL) used as a segment of a composite liner must meet all of the following requirements:

The GCL must be a factory-manufactured hydraulic barrier consisting of sodium bentonite clay supported by geotextiles that are held together by needling, stitching, or adhesives.

The GCL must be seamed according to the manufacturer's specifications to prevent leakage at the seams.

The GCL must not be laid during a precipitation event and is to be covered immediately by a flexible membrane liner or by another protective cover until the flexible membrane liner can be laid directly over the GCL.

The GCL must be installed according to the manufacturer's specifications and quality assurance and quality control plans. The installation is required to be certified by an engineer licensed under Act No. 299 of the Public Acts

of 1980, as amended, otherwise known as the "Occupational Code," overseeing the installation of the composite liner.

Flexible Membrane Liners

A flexible membrane liner (FML) required by this rule is to be placed directly over a natural soil barrier, compacted soil barrier or geocomposite clay liner to form what is referred to as the "composite liner." The FML and its installation must meet all of the following requirements:

The liner must be a minimum of 40 mils thick polyvinyl chloride (PVC) or 60 mils thick high-density polyethylene (HDPE). Other materials and thickness may be used if the department determines before installation, that the proposed material and thickness are sufficient to ensure that the integrity of the liner is not compromised due to contact with the soil base, wastewater, climatic conditions, or the stress of installation or daily operation.

An FML is required to be covered immediately after placement. The FML is to be covered by an adequate thickness of soil or other material approved by the department to prevent puncture by equipment and to protect the exposed portion of the FML from degradation by ultraviolet light.

The FML is to be placed upon a foundation or base capable of providing support to the liner and resistance to pressure gradients above and below the liner to prevent slope failure and failure of the liner due to settlement, compression, or uplift.

The FML must cover the entire area of earth material that would be in contact with the treated or stored effluent.

The slopes over which an FML is to be placed may not exceed a grade of 25 percent unless the owner and operator can demonstrate slope stability for slopes with steeper grades.

FML Seams

The field seams of an FML shall meet all of the following requirements:

Seaming is to be done in accordance with the minimum industry standards. The shear strength and peel strength of the seams must be adequate to maintain the integrity of the seam under all operating conditions.

Horizontal seams are not to occur on side slopes.

Horizontal seams are to be located not less than 5 feet from the toe of the slope.

Field seams are to be installed parallel to the line of maximum slope.

The seam area shall be free of moisture, dust, dirt, debris, and foreign material of any kind before seaming.

No field seaming is to be done in weather conditions that would adversely affect the integrity of the seam.

An engineer licensed under Act No. 299 of the Public Acts of 1980, as amended, otherwise known as the "Occupational Code," must certify to the department that all necessary quality assurance testing was conducted to ensure that the FML was installed appropriately.

Quality Assurance Reporting

As indicated previously, the owner and operator of a facility must ensure that a properly licensed engineer certifies in a report to the Water Resources Division of the DEQ that the installation of the natural soil base barriers, compacted soil base, GCL and FML were completed in accordance with approved plans and that all necessary quality assurance testing was completed. The report must include:

A narrative of the results of the quality assurance tests.

Construction records for each component of the composite liner, including all field notes and results of all quality assurance tests. Drawings should be prepared which reference the location of each test to the respective result.

A summary of the testing methods used in determining quality assurance.

For quality assurance test results that did not meet specifications contained in the approved engineering plans, the methods for bringing the components of the composite liner into compliance with approved specifications.

A set of as built plans, signed and sealed by the properly licensed engineer. As a minimum, the as built plans should include the following:

- Dimensions, location, and elevation of the base of the excavation.
- Elevations of the surface and the base of the clay liner(s).
- Elevations of the surface of the protective layer.
- Cross sections of the lagoon(s), including dike locations, keying details and FLM anchor trench details.

All elevations are to be \pm 0.5 feet, United States Geological Survey Datum.

A membrane panel layout drawing showing; panel and seam locations, repair locations, slope directions and slope toe locations.

Alternative Lagoon Standards

The department may approve a storage or treatment lagoon liner that does not meet 1 or more of the requirements specified in the rules if the applicant demonstrates that the requirements of either of the following provisions are met:

The lagoon holds only wastewater that meets the standards of Rule 2222.

The existing system or the proposed design provides equal or greater environmental protection to protection provided by a lagoon liner constructed according to the rules. For an existing system, the demonstration can be made by either of the following:

Through an exfiltration test that demonstrates, to the department's satisfaction, that the lagoon is not leaking at a rate likely to impact groundwater. or

Through monitoring of the groundwater and a demonstration approved by the department that the lagoon has not impacted, and is not likely to impact, groundwater.